

A Variational Approach for the Management of Green Areas

Patrizia DANIELE

UNIVERSITY OF CATANIA - ITALY

Joint work with $\boldsymbol{\mathsf{D}}.$ Sciacca

VAME 2022 - Brescia, May 9-10, 2022

1 Introduction

2 The Mathematical Model

1 Introduction

- 2 The Mathematical Model
- 3 Lagrange Theory

1 Introduction

- 2 The Mathematical Model
- 3 Lagrange Theory
- 4 Computational procedure

・ロト・日本・日本・日本・日本・日本

1 Introduction

- 2 The Mathematical Model
- 3 Lagrange Theory
- 4 Computational procedure
- 5 Numerical Examples

Computational procedure

Numerical Examples

Introduction

 United States Environmental Protection Agency: CO₂ is the primary greenhouse gas emitted through human activities

Computational procedure O

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

э

Introduction

- United States Environmental Protection Agency: CO₂ is the primary greenhouse gas emitted through human activities
- Intergovernmental Panel of Climate Change: most of the observed increase in globally averaged temperatures since the mid-twentieth century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations

Computational procedure O

Introduction

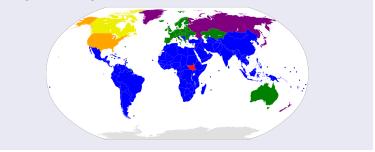
- United States Environmental Protection Agency: CO₂ is the primary greenhouse gas emitted through human activities
- Intergovernmental Panel of Climate Change: most of the observed increase in globally averaged temperatures since the mid-twentieth century is very likely due to the observed increase in anthropogenic greenhouse gas concentrations
- Consequences: global warming, climate change and a progressive environmental degradation (heat stress, storms and extreme precipitation, air pollution, melting glaciers, sea level rise, extinctions, reduced water resources, etc.)

Computational procedure O Numerical Examples

Introduction

International Agreements

Kyoto Protocol (1997): 180 countries and more than 55% of global greenhouse gas emissions



Computational procedure O

< ロ > < 部 > < き > < き >

Introduction

International Agreements

- Kyoto Protocol (1997): 180 countries and more than 55% of global greenhouse gas emissions
- Paris Agreement (2015): to contain the increase in the average global temperature below the 2°C threshold (196 states)

Computational procedure

Numerical Examples

Introduction

Main causes of the increase in greenhouse gas concentrations in the atmosphere:

Urban pollution

Computational procedure

Numerical Examples

Introduction

Main causes of the increase in greenhouse gas concentrations in the atmosphere:

- Urban pollution
- Development of cities

Patrizia DANIELE University of Catania 200

Strategies for improving air quality

 To enhance infrastructure and transport, thereby promoting the movement through public transport and the sharing of mobility (car sharing) and reducing the consumption of private cars

Strategies for improving air quality

- To enhance infrastructure and transport, thereby promoting the movement through public transport and the sharing of mobility (car sharing) and reducing the consumption of private cars
- To promote the purchase of zero-emission vehicles or to allow the movement of vehicles with alternate plates

Strategies for improving air quality

- To enhance infrastructure and transport, thereby promoting the movement through public transport and the sharing of mobility (car sharing) and reducing the consumption of private cars
- To promote the purchase of zero-emission vehicles or to allow the movement of vehicles with alternate plates
- To promote new technologies for monitoring air pollution such as air quality monitoring networks

Computational procedure O Numerical Examples

Introduction

Good Solutions

To increase public space that can be used to create new parks and open spaces for both recreational and commercial purposes

Computational procedure O Numerical Examples

Introduction

Good Solutions

- To increase public space that can be used to create new parks and open spaces for both recreational and commercial purposes
- To create green barriers along fast roads

Computational procedure O Numerical Examples

Introduction

Good Solutions

- To increase public space that can be used to create new parks and open spaces for both recreational and commercial purposes
- To create green barriers along fast roads
- To create green roofs

・ロト・日本・日本・日本・日本・日本

Costs

- To acquire new spaces
- To train personnel
- To convert land in green areas
- To manage pre-existent types of green areas

n cities

- *m* different types of green areas
- $x_{ij} \in \mathbb{R}_+$: space of green area of type j in city i
- $\underline{x}_{ii} \in \mathbb{R}_+$: the pre-existent space of green area of type j in city i

n cities

- *m* different types of green areas
- $x_{ij} \in \mathbb{R}_+$: space of green area of type j in city i
- $\underline{x}_{ij} \in \mathbb{R}_+$: the pre-existent space of green area of type j in city i

We assume that the optimal space of green area is not less than a quantity, l_i , imposed by law and, if in a country such a constraint does not exist, then the minimum quantity of green area imposed by law corresponds to the pre-existing one:

$$m_i := \max\left\{l_i, \sum_{j=1}^m \underline{x}_{ij}\right\}, \quad \forall i = 1, \dots, n$$

▲日▼▲□▼▲□▼▲□▼ 回 めるの

Computational procedure

Numerical Examples

The Mathematical Model

Condition 1

$$\sum_{j=1}^m x_{ij} + \sum_{j=1}^m \underline{x}_{ij} \ge m_i, \quad \forall i = 1, \dots, n$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Condition 1

$$\sum_{j=1}^{m} x_{ij} + \sum_{j=1}^{m} \underline{x}_{ij} \ge m_i, \quad \forall i = 1, \dots, n$$

We also impose that the total surface of green area in every city i is less than a fixed quantity u_i related to the total area of the city:

Condition 2

$$\sum_{j=1}^m x_{ij} + \sum_{j=1}^m \underline{x}_{ij} \le u_i, \quad \forall i = 1, \dots, n$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - つへで

Patrizia DANIELE

University of Catania

Computational procedure

Numerical Examples

The Mathematical Model

Variables and Functions

• $f_i \in \mathbb{R}_+$: flow of urban circulation in city *i*

Computational procedure O Numerical Examples

The Mathematical Model

- $f_i \in \mathbb{R}_+$: flow of urban circulation in city *i*
- c^a_{ij} = c^a_{ij}(x_{ij}, f_i) : acquisition cost associated with the expansion of green area of type j in city i

- $f_i \in \mathbb{R}_+$: flow of urban circulation in city *i*
- c^a_{ij} = c^a_{ij}(x_{ij}, f_i) : acquisition cost associated with the expansion of green area of type j in city i
- g_i: quantity of employees to train for the management and maintenance of public green spaces

- $f_i \in \mathbb{R}_+$: flow of urban circulation in city *i*
- c^a_{ij} = c^a_{ij}(x_{ij}, f_i) : acquisition cost associated with the expansion of green area of type j in city i
- g_i: quantity of employees to train for the management and maintenance of public green spaces
- $c_i^T = c_i^T(g_i)$: training cost for such personnel

- $f_i \in \mathbb{R}_+$: flow of urban circulation in city *i*
- c^a_{ij} = c^a_{ij}(x_{ij}, f_i) : acquisition cost associated with the expansion of green area of type j in city i
- g_i: quantity of employees to train for the management and maintenance of public green spaces
- $c_i^T = c_i^T(g_i)$: training cost for such personnel
- c^t_{ij} = c^t_{ij}(x_{ij}) : transformation cost which is required to convert the land in green area of type j in city i

- $f_i \in \mathbb{R}_+$: flow of urban circulation in city *i*
- c^a_{ij} = c^a_{ij}(x_{ij}, f_i) : acquisition cost associated with the expansion of green area of type j in city i
- g_i: quantity of employees to train for the management and maintenance of public green spaces
- $c_i^T = c_i^T(g_i)$: training cost for such personnel
- c^t_{ij} = c^t_{ij}(x_{ij}) : transformation cost which is required to convert the land in green area of type j in city i

•
$$\gamma_{ij}^m = \gamma_{ij}^m(x_{ij}, g_i)$$
: management cost of green area of type j in city i

- $f_i \in \mathbb{R}_+$: flow of urban circulation in city *i*
- c^a_{ij} = c^a_{ij}(x_{ij}, f_i) : acquisition cost associated with the expansion of green area of type j in city i
- g_i: quantity of employees to train for the management and maintenance of public green spaces
- $c_i^T = c_i^T(g_i)$: training cost for such personnel
- $c_{ij}^t = c_{ij}^t(x_{ij})$: transformation cost which is required to convert the land in green area of type j in city i
- $\gamma_{ij}^m = \gamma_{ij}^m(x_{ij}, g_i)$: management cost of green area of type j in city i
- γ_{ii}^m : management cost of pre-existent types of green areas

Computational procedure

Numerical Examples

The Mathematical Model

Total Management Costs

$$c_{ij}^m = \underline{\gamma}_{ij}^m + \gamma_{ij}^m(x_{ij}, g_i), \quad \forall i = 1, \dots, n, \ \forall j = 1, \dots, m$$

Lagrange Theory 0000000000 Computational procedure

Numerical Examples

The Mathematical Model

Total Management Costs

$$c_{ij}^m = \underline{\gamma}_{ii}^m + \gamma_{ij}^m(x_{ij}, g_i), \quad \forall i = 1, \dots, n, \ \forall j = 1, \dots, m$$

Additional Functions

~

•
$$e_i(f_i) = \sum_{k=1}^{2} e_{ik} + e_{i3}(f_i)$$
: total amount of CO₂ emissions of city *i*

・ロト・日本・日本・日本・日本・日本

Computational procedure O

The Mathematical Model

Total Management Costs

$$c_{ij}^{m} = \underline{\gamma}_{ii}^{m} + \gamma_{ij}^{m}(x_{ij}, g_i), \quad \forall i = 1, \dots, n, \ \forall j = 1, \dots, m$$

Additional Functions

•
$$e_i(f_i) = \sum_{k=1}^{2} e_{ik} + e_{i3}(f_i)$$
: total amount of CO₂ emissions of city *i*
• $e_i^a = \sum_{j=1}^{m} \alpha_j x_{ij}$: quantity of CO₂ absorbed by the overall green area
in city *i*

Computational procedure O Numerical Examples

The Mathematical Model

Purpose

Minimize the total costs incurred by the external institution to adapt the green area surface in each city to its real needs

▲□▶▲御▶▲臣▶▲臣▶ 臣 のQ@

Computational procedure O Numerical Examples 0000000000

The Mathematical Model

Purpose

Minimize the total costs incurred by the external institution to adapt the green area surface in each city to its real needs

Optimality Problem

$$\min\left\{\sum_{i=1}^{n}\sum_{j=1}^{m}c_{ij}^{a}(x_{ij},f_{i})+\sum_{i=1}^{n}c_{i}^{T}(g_{i})+\sum_{i=1}^{n}\sum_{j=1}^{m}c_{ij}^{t}(x_{ij})+\sum_{i=1}^{n}\sum_{j=1}^{m}c_{ij}^{m}(x_{ij},g_{i})\right\}$$

Patrizia DANIELE

University of Catania

Computational procedure

Numerical Examples

The Mathematical Model

Constraints

•
$$x_{ij} \ge \underline{x}_{ij}, \quad \forall i, \forall j$$

• $g_i, f_i \ge 0, \quad \forall i$
• $m_i \le \sum_{j=1}^m x_{ij} + \sum_{j=1}^m \underline{x}_{ij} \le u_i, \quad \forall i$
• $\sum_{j=1}^m \alpha_j x_{ij} \ge \sum_{k=1}^2 e_{ik} + e_{i3}(f_i) - \sum_{j=1}^m \alpha_j \underline{x}_{ij}, \quad \forall i$
• $g_i \le \sum_{j=1}^m \gamma_j x_{ij}, \quad \forall i$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Computational procedure

Numerical Examples 0000000000

Variational Inequality Formulation

Determine $(x^*, g^*, f^*) \in \mathbb{K}$ such that:

$$\begin{split} &\sum_{i=1}^{n}\sum_{j=1}^{m}\left[\frac{\partial c_{ij}^{a}(x_{ij}^{*},f_{i}^{*})}{\partial x_{ij}}+\frac{\partial c_{ij}^{t}(x_{ij}^{*})}{\partial x_{ij}}+\frac{\partial c_{ij}^{m}(x_{ij}^{*},g_{i}^{*})}{\partial x_{ij}}\right]\times[x_{ij}-x_{ij}^{*}]\\ &+\sum_{i=1}^{n}\left[\frac{\partial c_{i}^{T}(g_{i}^{*})}{\partial g_{i}}+\sum_{j=1}^{m}\frac{\partial c_{ij}^{m}(x_{ij}^{*},g_{i}^{*})}{\partial g_{i}}\right]\times[g_{i}-g_{i}^{*}]\\ &+\sum_{i=1}^{n}\left[\sum_{j=1}^{m}\frac{\partial c_{ij}^{a}(x_{ij}^{*},f_{i}^{*})}{\partial f_{i}}\right]\times[f_{i}-f_{i}^{*}]\geq0, \quad \forall (x,g,f)\in\mathbb{K} \end{split}$$

▲口▶▲圖▶▲圖▶▲圖▶ 圖 のQ()~

Patrizia DANIELE

University of Catania

Computational procedure

Numerical Examples

Variational Inequality Formulation

Standard Form

Find $X^* \in \mathcal{K} \subset \mathbb{R}^N$ such that $\langle F(X^*), X - X^* \rangle \ge 0, \quad \forall X \in \mathcal{K}$:

•
$$F_{ij}^{1}(X) \equiv \frac{\partial c_{ij}^{a}(x_{ij}, f_{i})}{\partial x_{ij}} + \frac{\partial c_{ij}^{t}(x_{ij})}{\partial x_{ij}} + \frac{\partial c_{ij}^{m}(x_{ij}, g_{i})}{\partial x_{ij}}$$

• $F_{i}^{2}(X) \equiv \frac{\partial c_{i}^{T}(g_{i})}{\partial g_{i}} + \sum_{j=1}^{m} \frac{\partial c_{ij}^{m}(x_{ij}, g_{i})}{\partial g_{i}}$
• $F_{i}^{3}(X) \equiv \sum_{j=1}^{m} \frac{\partial c_{ij}^{a}(x_{ij}, f_{i})}{\partial f_{i}}$

▲ロト▲聞と▲臣と▲臣と 臣 のえぐ

Computational procedure

Numerical Examples 0000000000

Variational Inequality Formulation

Assumptions

• Let all the involved functions be continuously differentiable and strictly convex with respect to all variables.

Computational procedure

イロト イポト イヨト イヨト

Numerical Examples

2

Variational Inequality Formulation

Assumptions

- Let all the involved functions be continuously differentiable and strictly convex with respect to all variables.
- Let *F* be a continuous function and the following coercivity condition be fulfilled:

$$\lim_{\|X\|\to\infty\atop{x\in\mathcal{K}}}\frac{\langle F(X),X\rangle}{\|x\|}=\infty$$

Patrizia DANIELE
University of Catania

Existence Results

Theorem (Existence)

Let us assume that all the Assumptions are satisfied. Then, there exists at least one solution to the variational inequality

Existence Results

Theorem (Existence)

Let us assume that all the Assumptions are satisfied. Then, there exists at least one solution to the variational inequality

Theorem (Strictly Monotonicity)

The function F defining the variational inequality is strictly monotone on \mathcal{K} , that is:

$$\langle (F(X^1)-F(X^2))^T,X^1-X^2
angle>0,\quad orall X^1,\;X^2\in\mathcal{K},\;X^1
eq X^2$$

Existence Results

Theorem (Existence)

Let us assume that all the Assumptions are satisfied. Then, there exists at least one solution to the variational inequality

Theorem (Strictly Monotonicity)

The function F defining the variational inequality is strictly monotone on \mathcal{K} , that is:

$$\langle (F(X^1)-F(X^2))^T,X^1-X^2
angle>0,\quad orall X^1,\;X^2\in\mathcal{K},\;X^1
eq X^2$$

Theorem (Uniqueness)

As F is strictly monotone in \mathcal{K} , then the variational inequality admits a unique solution

Computational procedure O Numerical Examples

Lagrange Theory

Aim

To find an alternative formulation of the variational inequality governing the minimization problem for the optimal green area model by means of the Lagrange multipliers associated with the constraints defining the feasible set ${\cal K}$

Patrizia DANIELE University of Catania ▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ▲臣 ● 釣んで

Introduction 000000000000	The Mathematical Model	Lagrange Theory 0●00000000	Numerical Examples 0000000000

We set:

$$a_{i} = m_{i} - \sum_{j=1}^{m} x_{ij} - \sum_{j=1}^{m} \underline{x}_{ij} \le 0, \quad \forall i$$

$$b_{i} = \sum_{j=1}^{m} x_{ij} + \sum_{j=1}^{m} \underline{x}_{ij} - u_{i} \le 0, \quad \forall i$$

$$q_{i} = \sum_{k=1}^{2} e_{ik} + e_{i3}(f_{i}) - \sum_{j=1}^{m} \alpha_{j}x_{ij} - \sum_{j=1}^{m} \alpha_{j}\underline{x}_{ij} \le 0, \quad \forall i$$

$$k_{i} = g_{i} - \sum_{j=1}^{m} \gamma_{j}x_{ij} \le 0, \quad \forall i$$

$$e_{ij} = -x_{ij} + \underline{x}_{ij} \le 0, \quad n_{i} = -g_{i} \le 0, \quad h_{i} = -f_{i} \le 0, \quad \forall i, \forall j$$

$$\Gamma(X) = (a_{i}, b_{i}, q_{i}, k_{i}, e_{ij}, n_{i}, h_{i})_{i, j} \quad \mathcal{K} = \{X \in \mathbb{R}^{2nm+2n}_{+} : \Gamma(X) \le 0\}$$

Computational procedure O Numerical Examples 0000000000

Lagrange Theory

Lagrange Function

$$\mathcal{L}(X, \omega, \varphi, \vartheta, \lambda, \psi, \mu, \varepsilon) = V(x, g, f) + \sum_{i=1}^{n} \omega_{i} a_{i}$$
$$+ \sum_{i=1}^{n} \varphi_{i} b_{i} + \sum_{i=1}^{n} \vartheta_{i} q_{i} + \sum_{i=1}^{n} \lambda_{i} k_{i}$$
$$+ \sum_{i=1}^{n} \sum_{j=1}^{m} \psi_{ij} e_{ij} + \sum_{i=1}^{n} \mu_{i} n_{i} + \sum_{i=1}^{n} \varepsilon_{i} h_{i},$$

 $\begin{aligned} \forall X \in \mathbb{R}^{nm+2n}_+, \ \forall \omega \in \mathbb{R}^n_+, \ \forall \varphi \in \mathbb{R}^n_+, \ \forall \vartheta \in \mathbb{R}^n_+, \\ \forall \lambda \in \mathbb{R}^n_+, \ \forall \psi \in \mathbb{R}^{nm}_+, \ \forall \mu \in \mathbb{R}^n_+, \ \forall \varepsilon \in \mathbb{R}^n_+ \end{aligned}$

Computational procedure O Numerical Examples

Lagrange Theory

Equivalence

Variational Inequality Problem $\iff \min_{X \in \mathcal{K}} V(x, g, f) = 0$

Computational procedure O

Lagrange Theory

Equivalence

Variational Inequality Problem $\iff \min_{X \in \mathcal{K}} V(x, g, f) = 0$

Theorem

The minimization problem satisfies the Karush-Kuhn-Tucker conditions

- * ロ * * 御 * * 注 * * 注 * * の < @

Computational procedure O

Lagrange Theory

Equivalence

Variational Inequality Problem $\iff \min_{X \in \mathcal{K}} V(x, g, f) = 0$

Theorem

The minimization problem satisfies the Karush-Kuhn-Tucker conditions

Theorem

Let X^{*} be the solution to the variational inequality, then the Lagrange multipliers, $\omega^* \in \mathbb{R}^n_+$, $\varphi^* \in \mathbb{R}^n_+$, $\vartheta^* \in \mathbb{R}^n_+$, $\lambda^* \in \mathbb{R}^n_+$, $\psi^* \in \mathbb{R}^{nm}_+$, $\mu^* \in \mathbb{R}^n_+$ and $\varepsilon^* \in \mathbb{R}^n_+$ associated with the constraints system do exist

Introduction 000000000000	The Mathematical Model	Lagrange Theory 0000€00000	Numerical Examples

Saddle Point

 $(X^*, \omega^*, \varphi^*, \vartheta^*, \lambda^*, \psi^*, \mu^*, \varepsilon^*)$ is a saddle point of the Lagrange function:

$$egin{aligned} \mathcal{L}(X^*,\omega,arphi,artheta,\lambda,\psi,\mu,arepsilon,\lambda) &&\leq \mathcal{L}(X^*,\omega^*,arphi^*,artheta^*,artheta^*,\lambda^*,\psi,^*\mu^*,arepsilon^*) \ &\leq \mathcal{L}(X,\omega^*,arphi^*,artheta^*,\lambda^*,\psi,^*\mu^*,arepsilon^*) \end{aligned}$$

$$\forall \boldsymbol{X} \in \mathbb{R}^{nm+2n}_+, \ \forall \boldsymbol{\omega} \in \mathbb{R}^n_+, \ \forall \boldsymbol{\varphi} \in \mathbb{R}^n_+, \ \forall \vartheta \in \mathbb{R}^n_+, \\ \forall \boldsymbol{\lambda} \in \mathbb{R}^n_+, \ \forall \boldsymbol{\psi} \in \mathbb{R}^{nm}_+, \ \forall \boldsymbol{\mu} \in \mathbb{R}^n_+, \ \forall \boldsymbol{\varepsilon} \in \mathbb{R}^n_+$$

and

$$\begin{split} \omega_i^* a_i^* &= 0, \ \varphi_i^* b_i^* &= 0, \\ \lambda_i^* h_i^* &= 0, \ \mu_i^* n_i^* &= 0, \\ \psi_{ij}^* x_{ij}^* &= 0, \ \forall i \\ \psi_{ij}^* x_{ij}^* &= 0, \ \forall i, \ \forall j \end{split}$$

Additional conditions

$$\begin{array}{lll} \frac{\partial \mathcal{L}}{\partial x_{ij}} & = & \frac{\partial c^a_{ij}(x^*_{ij},f^*_i)}{\partial x_{ij}} + \frac{\partial c^t_{ij}(x^*_{ij})}{\partial x_{ij}} + \frac{\partial c^m_{ij}(x^*_{ij},g^*_i)}{\partial x_{ij}} \\ & -\omega^*_i + \varphi^*_i - \alpha_j \vartheta^*_i - \gamma_j \lambda^*_i - \psi^*_{ij} = 0, \\ \frac{\partial \mathcal{L}}{\partial g_i} & = & \frac{\partial c^{\mathsf{T}}_i(g_i)}{\partial g_i} + \sum_{j=1}^m \frac{\partial c^m_{ij}(x^*_{ij},g^*_i)}{\partial g_i} + \lambda^*_i - \mu^*_i = 0, \\ \frac{\partial \mathcal{L}}{\partial f_i} & = & \sum_{j=1}^m \frac{\partial c^a_{ij}(x^*_{ij},f^*_i)}{\partial f_i} + \vartheta^*_i \frac{\partial e_{i3}(f^*_i)}{\partial f_i} - \varepsilon^*_i = 0, \end{array}$$

Patrizia DANIELE

University of Catania

Computational procedure

Э

< ロ > < 部 > < き > < き > ...

Lagrange Theory

Interpretation of some Lagrange Multipliers

If
$$a_i^* < 0$$
 and $b_i^* < 0 \iff m_i < \sum_{j=1}^m x_{ij}^* + \sum_{j=1}^m \underline{x}_{ij} < u_i \implies \omega_i^* = \varphi_i^* = 0$

Computational procedure

Lagrange Theory

Interpretation of some Lagrange Multipliers

$$If a_i^* < 0 and b_i^* < 0 \iff m_i < \sum_{j=1}^m x_{ij}^* + \sum_{j=1}^m \underline{x}_{ij} < u_i \Longrightarrow \\ \omega_i^* = \varphi_i^* = 0 \\ Iso, if x_{ij}^* > \underline{x}_{ij} \implies \psi_{ij}^* = 0 \implies \\ \frac{\partial c_{ij}^*(x_{ij}^*, f_i^*)}{\partial x_{ij}} + \frac{\partial c_{ij}^t(x_{ij}^*)}{\partial x_{ij}} + \frac{\partial c_{ij}^m(x_{ij}^*, g_i^*)}{\partial x_{ij}} = \alpha_j \vartheta_i^* + \gamma_j \lambda_i^*$$

Patrizia DANIELE University of Catania ・日本・西本・山田・山田・山市

Computational procedure

Lagrange Theory

Interpretation of some Lagrange Multipliers

• If
$$a_i^* < 0$$
 and $b_i^* < 0 \iff m_i < \sum_{j=1}^m x_{ij}^* + \sum_{j=1}^m \underline{x}_{ij} < u_i \Longrightarrow$
 $\omega_i^* = \varphi_i^* = 0$
• Also, if $x_{ij}^* > \underline{x}_{ij} \Longrightarrow \psi_{ij}^* = 0 \Longrightarrow$
 $\frac{\partial c_{ij}^*(x_{ij}^*, f_i^*)}{\partial x_{ij}} + \frac{\partial c_{ij}^m(x_{ij}^*, g_i^*)}{\partial x_{ij}} = \alpha_j \vartheta_i^* + \gamma_j \lambda_i^*$
• If $\lambda_i^* > 0$ and $\vartheta_i^* > 0 \Longrightarrow \sum_{k=1}^2 e_{ik} + e_{i3}(f_i^*) - \sum_{j=1}^m \alpha_j x_{ij}^* - \sum_{j=1}^m \alpha_j \underline{x}_{ij} = 0$
 $g_i^* - \sum_{j=1}^m \gamma_j x_{ij}^* = 0$

▲ロト ▲御 ト ▲ 国 ト ▲ 国 ト 一 国 - の Q ()

Computational procedure O

Lagrange Theory

Interpretation of some Lagrange Multipliers

- CO₂ emissions in city *i* is completely absorbed by the optimal green area
- The number of employees reaches the maximum allowed number

・ロト・西ト・ヨト・ヨー うらぐ

Interpretation of some Lagrange Multipliers

- CO₂ emissions in city *i* is completely absorbed by the optimal green area
- The number of employees reaches the maximum allowed number

₩

The total marginal cost associated with the expansion of green area increases

Interpretation of some Lagrange Multipliers

- CO₂ emissions in city *i* is completely absorbed by the optimal green area
- The number of employees reaches the maximum allowed number

₩

- The total marginal cost associated with the expansion of green area increases
- Each additional unit of green area or employees is unnecessary

Interpretation of some Lagrange Multipliers

- CO₂ emissions in city *i* is completely absorbed by the optimal green area
- The number of employees reaches the maximum allowed number

₩

- The total marginal cost associated with the expansion of green area increases
- Each additional unit of green area or employees is unnecessary
- Similar considerations hold even if only one between λ_i^* and ϑ_i^* is positive

Computational procedure

Lagrange Theory

Interpretation of some Lagrange Multipliers

• If both
$$\lambda_i^* = 0$$
 and $\vartheta_i^* = 0 \implies$
 $\sum_{k=1}^2 e_{ik} + e_{i3}(f_i^*) - \sum_{j=1}^m \alpha_j x_{ij}^* - \sum_{j=1}^m \alpha_j \underline{x}_{ij} < 0$ and $g_i^* - \sum_{j=1}^m \gamma_j x_{ij}^* < 0$

▲□▶▲舂▶▲≧▶▲≧▶ 差 のへで

Computational procedure

Lagrange Theory

Interpretation of some Lagrange Multipliers

• If both
$$\lambda_i^* = 0$$
 and $\vartheta_i^* = 0 \implies$

$$\sum_{k=1}^2 e_{ik} + e_{i3}(f_i^*) - \sum_{j=1}^m \alpha_j x_{ij}^* - \sum_{j=1}^m \alpha_j \underline{x}_{ij} < 0 \text{ and } g_i^* - \sum_{j=1}^m \gamma_j x_{ij}^* < 0$$
•
$$\sum_{\substack{j=1\\x_{ij}^*}}^m \left(c_{ij}^a(x_{ij}, f_i) + c_{ij}^t(x_{ij}) + c_{ij}^m(x_{ij}, g_i) \right) \text{ reaches its minimum value in } x_{ij}^*$$

▲ロト▲御ト▲臣ト▲臣ト 臣 めんぐ

Computational procedure

Lagrange Theory

Interpretation of some Lagrange Multipliers

• If both
$$\lambda_i^* = 0$$
 and $\vartheta_i^* = 0 \Longrightarrow$

$$\sum_{k=1}^2 e_{ik} + e_{i3}(f_i^*) - \sum_{j=1}^m \alpha_j x_{ij}^* - \sum_{j=1}^m \alpha_j \underline{x}_{ij} < 0 \text{ and } g_i^* - \sum_{j=1}^m \gamma_j x_{ij}^* < 0$$
•
$$\sum_{\substack{j=1\\ x_{ij}^*}}^m \left(c_{ij}^a(x_{ij}, f_i) + c_{ij}^t(x_{ij}) + c_{ij}^m(x_{ij}, g_i) \right) \text{ reaches its minimum value in } x_{ij}^*$$

• If
$$\varphi_i^* > 0 \Longrightarrow \sum_{j=1}^m x_{ij}^* + \sum_{j=1}^m \underline{x}_{ij} = u_i$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Patrizia DANIELE

University of Catania

Computational procedure O

Lagrange Theory

Interpretation of some Lagrange Multipliers

• If both
$$\lambda_i^* = 0$$
 and $\vartheta_i^* = 0 \Longrightarrow$

$$\sum_{k=1}^{2} e_{ik} + e_{i3}(f_i^*) - \sum_{j=1}^{m} \alpha_j x_{ij}^* - \sum_{j=1}^{m} \alpha_j \underline{x}_{ij} < 0 \text{ and } g_i^* - \sum_{j=1}^{m} \gamma_j x_{ij}^* < 0$$

$$\sum_{\substack{j=1\\x_{ij}^*}}^{m} \left(c_{ij}^*(x_{ij}, f_i) + c_{ij}^t(x_{ij}) + c_{ij}^m(x_{ij}, g_i) \right) \text{ reaches its minimum value in } x_{ij}^*$$

• If
$$\varphi_i^* > 0 \Longrightarrow \sum_{j=1} x_{ij}^* + \sum_{j=1} \underline{x}_{ij} = u_i$$

The optimal green area added to the pre-existing one reaches the maximum percentage of city *i* to be allocated to green areas.

Computational procedure O

Lagrange Theory

Interpretation of some Lagrange Multipliers

• If
$$\psi_{ij}^* = 0 \Longrightarrow$$

$$\frac{\partial c_{ij}^a(x_{ij}^*, f_i^*)}{\partial x_{ij}} + \frac{\partial c_{ij}^t(x_{ij}^*)}{\partial x_{ij}} + \frac{\partial c_{ij}^m(x_{ij}^*, g_i^*)}{\partial x_{ij}} = -\varphi_i^* + \alpha_j \vartheta_i^* + \gamma_j \lambda_i^*$$
• If $\lambda_i^* = 0$ and $\vartheta_i^* = 0 \Longrightarrow g_i^* - \sum_{j=1}^m \gamma_j x_{ij}^* < 0$

$$\sum_{k=1}^2 e_{ik} + e_{i3}(f_i^*) - \sum_{j=1}^m \alpha_j x_{ij}^* - \sum_{j=1}^m \alpha_j \underline{x}_{ij} < 0$$

The total emissions cannot be completely absorbed by the green area of the city and therefore actions should be taken in this sense

Computational procedure

Computational procedure

Euler Method and Convergence

$$X^{\tau+1}=P_{\mathcal{K}}(X^{\tau}-a_{\tau}F(X^{\tau})):\sum_{\tau=0}^{\infty}a_{\tau}=\infty,\ a_{\tau}>0,\ a_{\tau}\rightarrow0,\ \text{as}\ \tau\rightarrow\infty$$

Computational procedure

Computational procedure

Euler Method and Convergence

$$X^{\tau+1} = P_{\mathcal{K}}(X^{\tau} - a_{\tau}F(X^{\tau})) : \sum_{\tau=0}^{\infty} a_{\tau} = \infty, \ a_{\tau} > 0, \ a_{\tau} \to 0, \ \text{as} \ \tau \to \infty$$

Description

- **Step 0: Initialization** $X^0 \in \mathcal{K}$, $\tau = 1$
- Step 1: Computation

 $X^{ au} \in \mathcal{K}$ solving the following variational inequality subproblem:

$$\langle X^{ au} + a_{ au}F(X^{ au-1}) - X^{ au-1}, X - X^{ au}
angle \geq 0, \quad \forall X \in \mathcal{K}$$

Step 2: Convergence

 $\epsilon > 0$ and check whether $|X^{\tau} - X^{\tau+1}| \le \epsilon$, then stop; otherwise, $\tau := \tau + 1$, and go to Step 1

Computational procedure O Numerical Examples

Numerical Examples

Type of green area		Capacity of a km ² to absorb CO ₂ : α_j
j = 1: Urban green area	High	$lpha_1=$ 545,000 kg/yr
j = 2: Natural green area	Medium	$lpha_2=$ 569,070 kg/yr

Table: Types of green areas considered in our model.

▲ロト▲御ト▲臣ト▲臣ト 臣 めんぐ

The Mathematical Mod 0000000000 Lagrange Theory 0000000000 Computational procedure

Numerical Examples

Metropolitan city of Catania

1,108,040 inhabitants

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Computational procedure

Numerical Examples

Metropolitan city of Catania

- 1,108,040 inhabitants
- 58 municipalities

- * ロ ▶ * @ ▶ * 差 ▶ * 差 * のへぐ

Computational procedure

Numerical Examples

Metropolitan city of Catania

- 1,108,040 inhabitants
- 58 municipalities
- 3,570 km² extension

- ▲ ロ ▶ ▲ 母 ▶ ▲ 母 ▶ → 母 → の < @

Computational procedure

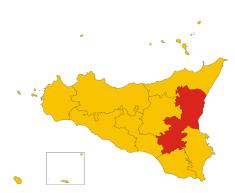
Numerical Examples

Metropolitan city of Catania

- 1,108,040 inhabitants
- 58 municipalities
- 3,570 km² extension
- 9 m² of green area available for every citizen

Computational procedure O Numerical Examples

Metropolitan city of Catania

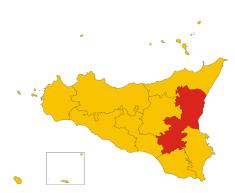


- 1,108,040 inhabitants
- 58 municipalities
- 3,570 km² extension
- 9 m² of green area available for every citizen
- 9.97 km² of green area needed

▲日▼▲□▼▲回▼▲回▼ 回 めぐら

Computational procedure

Metropolitan city of Catania



- 1,108,040 inhabitants
- 58 municipalities
- 3,570 km² extension
- 9 m² of green area available for every citizen
- 9.97 km² of green area needed
- 636.11 km² existing green area: specifically, <u>x</u>₁₁ = 536.05 km² and <u>x</u>₁₂ = 100.06 km²

Computational procedure

Numerical Examples

Metropolitan city of Catania

Emissions and Cost Functions

$$\begin{split} e_{11} &= 637, 635, 890 \text{ kg/yr (emissions due to population)} \\ e_{12} &= 728, 210, 000 \text{ kg/yr (emissions due to industrial activities)} \\ c_{11}^{a}(x_{11}, f_1) &= 0.20x_{11}^2 - 0.15x_{11} + 1.20f_1^2 - 0.90f_1 + 13 \\ c_{12}^{a}(x_{12}, f_1) &= 0.30x_{12}^2 - 0.25x_{12} + 1.20f_1^2 - 0.90f_1 + 13 \\ c_{11}^{T}(g_1) &= 0.8g_1^2 - 0.6g_1 + 8 c_{11}^t(x_{11}) = 1.20x_{11}^2 - 1.10x_{11} + 8 \\ c_{12}^t(x_{12}) &= 1.20x_{12}^2 - 1.15x_{12} + 8 \\ c_{11}^m(x_{11}, g_1) &= 0.80x_{11}^2 - 0.70x_{11} + 0.8g_1^2 - 0.6g_1 + 27 \\ c_{12}^m(x_{12}, g_1) &= 0.50x_{12}^2 - 0.50x_{12} + 0.8g_1^2 - 0.6g_1 + 22 \end{split}$$

Computational procedure O Numerical Examples

Metropolitan city of Catania

Optimal Solution

$$x_{11}^* = 587.27 \text{ km}^2, \quad x_{12}^* = 703.47 \text{ km}^2,$$

 $g_1^* = 140,000, \quad f_1^* = 710,264$

(日)

Computational procedure O Numerical Examples

Metropolitan city of Catania

Optimal Solution

$$x_{11}^* = 587.27 \text{ km}^2, \quad x_{12}^* = 703.47 \text{ km}^2,$$

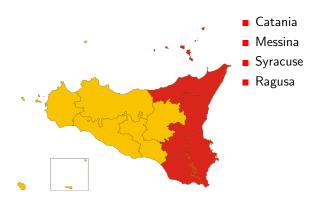
 $g_1^* = 140,000, \quad f_1^* = 710,264$

Remark

The optimal green space amounts to 36.15% of the total territory of the metropolitan city, a value that differs greatly from the existing green area, which amounts to only 19.96% of the total territory

Computational procedure

Eastern Sicily



Computational procedure

Numerical Examples

Eastern Sicily

City	Surface (km ²)	Inhabithans	Emissions (kg/yr)	Pre-existing green area (km ²)
Catania	3570	1,108,040	$e_{11} = 637, 635, 890$ $e_{12} = 728, 210, 000$	$\underline{x}_{11} = 536$ $\underline{x}_{12} = 100$
Messina	3266.12	627,251	$e_{21}=360,959,667$ $e_{22}=1,113,000,000$	$\underline{x}_{21} = 48.99$ $\underline{x}_{22} = 2.29$
Syracuse	2124.13	397,341	e_{31} =228,654,421 e_{32} =1,020,000,000	$\underline{x}_{31} = 8.5$ $\underline{x}_{32} = 120.9$
Ragusa	1623.89	320,893	$\substack{e_{41}=184,661,545\\e_{42}=619,330,000}$	$\underline{x}_{41} = 6.5$ $\underline{x}_{42} = 105.55$

University of Catania

Computational procedure

Numerical Examples

Eastern Sicily

Optimal Solution

$$\begin{array}{l} x_{11}^{*} = 587.27 \ \mathrm{km}^{2}, \ x_{12}^{*} = 703.47 \ \mathrm{km}^{2}, \ g_{1}^{*} = 140,000, \ f_{1}^{*} = 710,264 \\ x_{21}^{*} = 248.99 \ \mathrm{km}^{2}, \ x_{22}^{*} = 2.31 \ \mathrm{km}^{2}, \ g_{2}^{*} = 257,600, \ f_{2}^{*} = 341,283 \\ x_{31}^{*} = 408.5 \ \mathrm{km}^{2}, \ x_{32}^{*} = 1536 \ \mathrm{km}^{2}, \ g_{3}^{*} = 194,620, \ f_{3}^{*} = 63,354 \\ x_{41}^{*} = 93.5 \ \mathrm{km}^{2}, \ x_{42}^{*} = 225.98 \ \mathrm{km}^{2}, \ g_{4}^{*} = 320,790, \ f_{4}^{*} = 46,072 \end{array}$$

▲ロト ▲御 ト ▲臣 ト ▲臣 ト ―臣 … 釣べ⊙

Computational procedure O Numerical Examples

Eastern Sicily

Remark

It is necessary to increase the percentage of green area to counteract the CO₂ emissions

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへで

Eastern Sicily

Remark

- It is necessary to increase the percentage of green area to counteract the CO₂ emissions
- Syracuse: the new green area should be 91% of the total area of the city

Eastern Sicily

Remark

- It is necessary to increase the percentage of green area to counteract the CO₂ emissions
- Syracuse: the new green area should be 91% of the total area of the city
- The optimal flow is less than the initial flow

Computational procedure

Numerical Examples

Conclusions

 Optimization model for the management of green areas, Lagrange theory, computational procedure, and concrete examples

Computational procedure

Conclusions

- Optimization model for the management of green areas, Lagrange theory, computational procedure, and concrete examples
- The model could be further extended and improved, by introducing also budget constraints to the local organizations or increasing the awareness of inhabitants and of the industries with respect to environment and life, requiring, for instance, that every year a part of their revenue has to be destined to the improvement and maintenance of green areas

Introduction 00000000000000 The Mathematical Model

Lagrange Theory 0000000000 Computational procedure

Numerical Examples

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで