International Human Migration Networks Under Regulations

Patrizia DANIELE
University of Catania - Italy
Joint work with A. Nagurney

Analysis, Control, and Numerics for PDE Models of Interest to Physical and Life Sciences

Levico Terme - September 20-24, 2021

Outline

Outline

Outline

(1) Introduction
(2) The mathematical model

Outline

(1) Introduction
(2) The mathematical model
(3) Variational Inequality Formulations

Outline

(1) Introduction
(2) The mathematical model
(3) Variational Inequality Formulations

4 Lagrange Theory

Outline

(1) Introduction
(2) The mathematical model
(3) Variational Inequality Formulations

4 Lagrange Theory
(5) Illustrative Examples

Outline

(1) Introduction
(2) The mathematical model
(3) Variational Inequality Formulations

4 Lagrange Theory
(5) Illustrative Examples
(6) The Modified Projection Method

Outline

(1) Introduction
(2) The mathematical model
(3) Variational Inequality Formulations

4 Lagrange Theory
(5) Illustrative Examples

6 The Modified Projection Method
(7) Numerical Examples

Outline

(1) Introduction
(2) The mathematical model
(3) Variational Inequality Formulations

4 Lagrange Theory
(5) Illustrative Examples

6 The Modified Projection Method
(7) Numerical Examples
(8) Conclusions

Introduction

Definition (Human Migration)

It is the movement that people do from one place to another with the intention of settling temporarily or permanently in the new location

Introduction

Definition (Human Migration)

It is the movement that people do from one place to another with the intention of settling temporarily or permanently in the new location

Main Causes

Many social and economical factors affect the dynamics of human populations, such as poverty, violence, war, dictatorships, persecutions, oppression, genocide, ethnic cleansing, climate change, tsunamis, floods, earthquakes, famines, family reunification as well as economic and educational possibilities or a job.

Introduction

University of Catania Patrizia DANIELE

Figure: World's congested human migration routes

Introduction

Today there are 258 million people living in a country different from that of birth, with an increase of 49% since 2000 , which means that 3.4% of the world's inhabitants are international migrants (International Migration Report, 2017).

Introduction

Today there are 258 million people living in a country different from that of birth, with an increase of 49% since 2000 , which means that 3.4% of the world's inhabitants are international migrants (International Migration Report, 2017).

Between 2000 and 2015, migration contributed 42% of the population growth in Northern America and 31\% in Oceania. In Europe, the size of the total population would have declined during the period 2000-2015 in the absence of migration.

Introduction

Today there are 258 million people living in a country different from that of birth, with an increase of 49% since 2000 , which means that 3.4% of the world's inhabitants are international migrants (International Migration Report, 2017).

Between 2000 and 2015, migration contributed 42% of the population growth in Northern America and 31\% in Oceania. In Europe, the size of the total population would have declined during the period 2000-2015 in the absence of migration.

During 2018 Mediterranean arrivals were 141,475 , with more than 2,000 dead and missing people.

Introduction

Today there are 258 million people living in a country different from that of birth, with an increase of 49% since 2000 , which means that 3.4% of the world's inhabitants are international migrants (International Migration Report, 2017).

Between 2000 and 2015, migration contributed 42% of the population growth in Northern America and 31% in Oceania. In Europe, the size of the total population would have declined during the period 2000-2015 in the absence of migration.

During 2018 Mediterranean arrivals were 141,475 , with more than 2,000 dead and missing people.

From 2018 until January 2019, 17\% of arrivals by sea were registered in Italy, compared to 69% in 2017 (UNHCR).

Introduction

University of Catania

Patrizia DANIELE

Deaths in the Mediterranean

Figure: World's congested human migration routes

Introduction

Now, with the COVID-19 pandemic, declared by the World Health Organization on March 11, 2020, Dolmans et al. (2020) report that COVID-19 is likely to exacerbate what is already a humanitarian emergency in terms of a global refugee crisis. The authors argue that refugees may encounter increased difficulty in seeking asylum due to measures imposed by governments in response to the pandemic.

State-of-the-art

University of Catania

Patrizia
DANIELE

Introduction

The

mathematical model

Variational Inequality Formulations

- Nagurney, 1989: a multiclass migration equilibrium model, which did not include migration/movement costs, isomorphic to a traffic network equilibrium.

State-of-the-art

University of Catania

Patrizia
DANIELE

- Nagurney, 1989: a multiclass migration equilibrium model, which did not include migration/movement costs, isomorphic to a traffic network equilibrium.
- Nagurney, 1990: network equilibrium model and reformulation of the equilibrium conditions as the solution to an equivalent quadratic programming problem.

State-of-the-art

- Nagurney, 1989: a multiclass migration equilibrium model, which did not include migration/movement costs, isomorphic to a traffic network equilibrium.
- Nagurney, 1990: network equilibrium model and reformulation of the equilibrium conditions as the solution to an equivalent quadratic programming problem.
- Kalashnykov and Kalashnykova, 2006: equivalence of the equilibrium to a solution of an appropriate variational inequality problem.

State-of-the-art

- Nagurney, 1989: a multiclass migration equilibrium model, which did not include migration/movement costs, isomorphic to a traffic network equilibrium.
- Nagurney, 1990: network equilibrium model and reformulation of the equilibrium conditions as the solution to an equivalent quadratic programming problem.
- Kalashnykov and Kalashnykova, 2006: equivalence of the equilibrium to a solution of an appropriate variational inequality problem.
- Cojocaru, 2007: application of the double-layer dynamics theory for modelling dynamics of human migration problems reformulated as transportation network problems.

State-of-the-art

- Nagurney, 1989: a multiclass migration equilibrium model, which did not include migration/movement costs, isomorphic to a traffic network equilibrium.
- Nagurney, 1990: network equilibrium model and reformulation of the equilibrium conditions as the solution to an equivalent quadratic programming problem.
- Kalashnykov and Kalashnykova, 2006: equivalence of the equilibrium to a solution of an appropriate variational inequality problem.
- Cojocaru, 2007: application of the double-layer dynamics theory for modelling dynamics of human migration problems reformulated as transportation network problems.
- Cui and Bai, 2014: evolution of population density and spread of epidemics in population systems.

State-of-the-art

- Nagurney, 1989: a multiclass migration equilibrium model, which did not include migration/movement costs, isomorphic to a traffic network equilibrium.
- Nagurney, 1990: network equilibrium model and reformulation of the equilibrium conditions as the solution to an equivalent quadratic programming problem.
- Kalashnykov and Kalashnykova, 2006: equivalence of the equilibrium to a solution of an appropriate variational inequality problem.
- Cojocaru, 2007: application of the double-layer dynamics theory for modelling dynamics of human migration problems reformulated as transportation network problems.
- Cui and Bai, 2014: evolution of population density and spread of epidemics in population systems.
- Volpert, Petrovskiic, Zincenkoc, 2017: interaction of human migration and wealth distribution.

State-of-the-art

- Causa, Jadamba, Raciti, 2017: inclusion of uncertainty in the utility functions, the migration cost functions, and the populations.

State-of-the-art

- Causa, Jadamba, Raciti, 2017: inclusion of uncertainty in the utility functions, the migration cost functions, and the populations.
- Nagurney, Daniele, Nagurney, 2019: modeling, analysis, and solution of refugee migration networks.

State-of-the-art

- Causa, Jadamba, Raciti, 2017: inclusion of uncertainty in the utility functions, the migration cost functions, and the populations.
- Nagurney, Daniele, Nagurney, 2019: modeling, analysis, and solution of refugee migration networks.
- Cappello, Daniele, 2020: a network based model where the aim of each migration class is to maximize the attractiveness of the origin country and the optimization model is formulated in terms of a Nash equilibrium problem and a variational inequality.

State-of-the-art

- Causa, Jadamba, Raciti, 2017: inclusion of uncertainty in the utility functions, the migration cost functions, and the populations.
- Nagurney, Daniele, Nagurney, 2019: modeling, analysis, and solution of refugee migration networks.
- Cappello, Daniele, 2020: a network based model where the aim of each migration class is to maximize the attractiveness of the origin country and the optimization model is formulated in terms of a Nash equilibrium problem and a variational inequality.
- Nagurney, Daniele 2021: development of a network model with regulations.

The mathematical model

Migration Class 1

Migration Class J

Figure: The Network Structure of International Human Migration

Common Notation

University of
Catania
Patrizia DANIELE

Notation	Definition
$f_{i j}^{k}$	the flow of migrants of class k from country i to coun- try j. The $\left\{f_{i j}^{k}\right\}$ elements for all i and j and fixed k are grouped into the vector $f^{k} \in R_{+}^{n n . ~ W e ~ t h e n ~ f u r t h e r ~}$ group the f^{k} vectors; $k=1, \ldots, J$, into the vector $f \in R_{+}^{J n n}$.
p_{i}^{k}	the nonnegative population of migrant class k in coun- try $i . \quad$ We group the populations of class $k ; k=$ $1, \ldots, J$, into the vector $p^{k} \in R_{+}^{n}$. We then further group all such vectors into the vector $p \in R_{+}^{J n .}$
\bar{p}_{i}^{k}	the initial fixed population of class k in country $i ; i=$ $1, \ldots, n ; k=1, \ldots, J$.
$u_{i}^{k}(p)$	the utility perceived by class k in country $i ; i=$ $1, \ldots, n ; k=1, \ldots, J$.
$c_{i j}^{k}(f)$	the cost of international migration, which includes economic, psychological, and social costs encumbered by class k in migrating from country i to country $j ;$ $i=1, \ldots, n ; j=1, \ldots, n ; k=1, \ldots, J$.

The mathematical model

Conservation of flow equations

$$
\begin{gathered}
\bar{p}_{i}^{k}=\sum_{l} f_{i l}^{k},(a) \quad \text { and } \quad p_{i}^{k}=\sum_{l} f_{l i}^{k},(b) \quad \forall i, \forall k \\
\hat{\imath} \\
p_{i}^{k}-\bar{p}_{i}^{k}=\sum_{l} f_{l i}^{k}-\sum_{l} f_{i l}^{k}, \quad \forall i, \forall k
\end{gathered}
$$

Equilibrium Conditions

Definition (International Human Migration Equilibrium without Regulations)

A vector of populations and international migration flows $\left(p^{*}, f^{*}\right) \in K^{1}$ is in equilibrium if it satisfies the equilibrium conditions: For each class $k ; k=1, \ldots, J$ and each pair of countries $i, j ; i=1, \ldots, n ; j=1, \ldots, n$:

$$
u_{i}^{k}\left(p^{*}\right)+c_{i j}^{k}\left(f^{*}\right)\left\{\begin{array}{lll}
=u_{j}^{k}\left(p^{*}\right)-\lambda_{i}^{k *}, & \text { if } & f_{i j}^{k *}>0 \\
\geq u_{j}^{k}\left(p^{*}\right)-\lambda_{i}^{k *}, & \text { if } & f_{i j}^{k *}=0
\end{array}\right.
$$

and

$$
\lambda_{i}^{k *} \begin{cases}\geq 0, & \text { if } \\ =0, & \text { if } \\ \sum_{l \neq i} f_{i I}^{k *}=\bar{p}_{i}^{k} \\ f_{i I}^{k *}<\bar{p}_{i}^{k}\end{cases}
$$

Variational Formulation of the International Human Migration Model without Regulations

Theorem

A population and migration flow pattern $\left(p^{*}, f^{*}\right) \in K^{1}$ is an international human migration equilibrium without regulations according to Definition 1, if and only if it satisfies the variational inequality problem

$$
\begin{gathered}
-\left\langle u\left(p^{*}\right), p-p^{*}\right\rangle+\left\langle c\left(f^{*}\right), f-f^{*}\right\rangle \geq 0, \\
\forall(p, f) \in K^{1} \equiv\{(p, f) \mid f \geq 0, \text { and }(a) \text { and }(b) \text { hold }\}
\end{gathered}
$$

Variational Formulation of the International Human Migration Model with Regulations

We now consider regulations imposed by a single country \bar{j} :

$$
\begin{equation*}
\sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i j}^{k} \leq U_{\bar{j}} \tag{c}
\end{equation*}
$$

Variational Formulation of the International Human Migration Model with Regulations

We now consider regulations imposed by a single country \bar{j} :

$$
\begin{equation*}
\sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i j}^{k} \leq U_{\bar{j}} \tag{c}
\end{equation*}
$$

Different types of regulations

- restriction of the migratory flow from a specific country \bar{i} and specific class of migrant \bar{k} :

$$
f_{i \overline{i j}}^{\bar{k}} \leq U_{\bar{j}}
$$

Variational Formulation of the International Human Migration Model with Regulations

We now consider regulations imposed by a single country \bar{j} :

$$
\begin{equation*}
\sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i j}^{k} \leq U_{\bar{j}} \tag{c}
\end{equation*}
$$

Different types of regulations

- restriction of the migratory flow from a specific country \bar{i} and specific class of migrant \bar{k} :

$$
f_{i \bar{k}}^{\bar{k}} \leq U_{\bar{j}}
$$

- upper bounds on all incoming migrants from a specific country \bar{i}, irrespective of class:

$$
\sum_{k} f_{\overline{i j}}^{k} \leq U_{\bar{j}}
$$

Variational Formulation of the International Human Migration Model with Regulations

We now consider regulations imposed by a single country \bar{j} :

$$
\begin{equation*}
\sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i \bar{j}}^{k} \leq U_{\bar{j}} \tag{c}
\end{equation*}
$$

Different types of regulations

- restriction of the migratory flow from a specific country \bar{i} and specific class of migrant \bar{k} :

$$
f_{i j}^{\bar{k}} \leq U_{\bar{j}}
$$

- upper bounds on all incoming migrants from a specific country \bar{i}, irrespective of class:

$$
\sum_{k} f_{i j}^{k} \leq U_{\bar{j}}
$$

- regulations restricting the number of all incoming migrants of class \bar{k} from a group of countries:

$$
\sum_{i \in C^{1}} f_{i \bar{j}}^{\bar{k}} \leq U_{\bar{j}}
$$

Variational Formulation of the International Human Migration Model with Regulations

New Feasible Set

$$
K^{2} \equiv K^{1} \cap\{f \mid(c) \text { is satisfied }\}
$$

Variational Formulation of the International Human Migration Model with Regulations

New Feasible Set

$$
K^{2} \equiv K^{1} \cap\{f \mid(c) \text { is satisfied }\}
$$

Theorem

A population and migration flow pattern $\left(p^{*}, f^{*}\right) \in K^{2}$ is an international human migration equilibrium with regulations, if and only if it satisfies the variational inequality problem

$$
-\left\langle u\left(p^{*}\right), p-p^{*}\right\rangle+\left\langle c\left(f^{*}\right), f-f^{*}\right\rangle \geq 0, \quad \forall(p, f) \in K^{2}
$$

Equivalent Variational Inequality Formulation

VI in flows
Determine $f^{*} \in K^{3} \equiv\left\{f \mid f \in R_{+}^{J n n}\right.$ and (a) and (c) hold $\}$ such that

$$
\sum_{i} \sum_{j} \sum_{k}\left(-\hat{u}_{j}^{k}\left(f^{*}\right)+c_{i j}^{k}\left(f^{*}\right)\right) \times\left(f_{i j}^{k}-f_{i j}^{k *}\right) \geq 0, \quad \forall f \in K^{3}
$$

Lagrange Function

K^{3} can be rewritten as follows:

$$
K^{3}=\left\{f:-f \leq 0 ; \sum_{j} f_{i j}^{k}-\bar{p}_{i}^{k}=0, \forall i, \forall k ; \sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i \bar{j}}^{k}-U_{\bar{j}} \leq 0\right\}
$$

and the last variational inequality can be rewritten as a minimization problem, since if we set:

$$
V(f)=\sum_{i} \sum_{j} \sum_{k}\left(-\hat{u}_{j}^{k}\left(f^{*}\right)+c_{i j}^{k}\left(f^{*}\right)\right) \times\left(f_{i j}^{k}-f_{i j}^{k *}\right)
$$

then we have:

$$
V(f) \geq 0 \text { for } f \in K^{3} \text { and } \min _{f \in K^{3}} V(f)=V\left(f^{*}\right)=0
$$

Existence of Lagrange Multipliers and Strong Duality

Theorem

If $f^{*} \in K^{3}$ is a solution to variational inequality, then the Lagrange multipliers $\bar{\gamma} \in R_{+}^{J n n}, \bar{\delta} \in R^{J n}$, and $\bar{\mu}_{j} \in R_{+}$do exist, and for all i, j, k, and \bar{j}, the following conditions hold true:

$$
\begin{gather*}
\bar{\gamma}_{i j}^{k}\left(-f_{i j}^{k *}\right)=0, \quad \bar{\delta}_{i k}\left(\sum_{j} f_{i j}^{k *}-\bar{p}_{i}^{k}\right)=0, \tag{d}\\
\bar{\mu}_{\bar{j}}\left(\sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i \bar{j}}^{k *}-U_{\bar{j}}\right)=0 \\
-\hat{u}_{j}^{k}\left(f^{*}\right)+c_{i j}^{k}\left(f^{*}\right)-\bar{\gamma}_{i j}^{k}+\bar{\delta}_{i k}=0, \quad \text { if } j \neq \bar{j} \tag{e}\\
-\hat{u}_{j}^{k}\left(f^{*}\right)+c_{i \bar{j}}^{k}\left(f^{*}\right)-\bar{\gamma}_{i \bar{j}}^{k}+\bar{\delta}_{i k}+\bar{\mu}_{\bar{j}}=0, \quad \text { if } j=\bar{j} \tag{f}
\end{gather*}
$$

Moreover, the strong duality also holds true; namely:

$$
V\left(f^{*}\right)=\min _{f \in K^{3}} V(f)=\max _{\gamma \in R_{+}^{J n n}, \delta \in R^{J_{n}}, \mu_{j} \in R_{+}} \min _{f \in R^{J n n}} \mathcal{L}\left(f, \gamma, \delta, \mu_{\bar{j}}\right)
$$

Interpretation of the Lagrange Analysis

- If $f_{i j}^{k *}>0$ for some $j \neq \bar{j}$; from (d) we know that then $\bar{\gamma}_{i j}^{k}=0$. It then follows from (e) that: $\quad \bar{\delta}_{i k}+c_{i j}^{k}\left(f^{*}\right)=\hat{u}_{j}^{k}\left(f^{*}\right)$

Interpretation of the Lagrange Analysis

- If $f_{i j}^{k *}>0$ for some $j \neq \bar{j}$; from (d) we know that then $\bar{\gamma}_{i j}^{k}=0$. It then follows from (e) that:

$$
\bar{\delta}_{i k}+c_{i j}^{k}\left(f^{*}\right)=\hat{u}_{j}^{k}\left(f^{*}\right)
$$

- If $f_{i j}^{k *}=0$, for some $j \neq \bar{j}$, then $\bar{\gamma}_{i j}^{k} \geq 0$, and, from (e), we can infer that:

$$
\bar{\delta}_{i k}+c_{i j}^{k}\left(f^{*}\right)=\hat{u}_{j}^{k}\left(f^{*}\right)+\bar{\gamma}_{i j}^{k} \quad \text { equivalently: } \quad \bar{\delta}_{i k}+c_{i j}^{k}\left(f^{*}\right) \geq \hat{u}_{j}^{k}\left(f^{*}\right)
$$

Interpretation of the Lagrange Analysis

- If $f_{i j}^{k *}>0$ for some $j \neq \bar{j}$; from (d) we know that then $\bar{\gamma}_{i j}^{k}=0$. It then follows from (e) that:

$$
\bar{\delta}_{i k}+c_{i j}^{k}\left(f^{*}\right)=\hat{u}_{j}^{k}\left(f^{*}\right)
$$

- If $f_{i j}^{k *}=0$, for some $j \neq \bar{j}$, then $\bar{\gamma}_{i j}^{k} \geq 0$, and, from (e), we can infer that:

$$
\bar{\delta}_{i k}+c_{i j}^{k}\left(f^{*}\right)=\hat{u}_{j}^{k}\left(f^{*}\right)+\bar{\gamma}_{i j}^{k} \quad \text { equivalently: } \quad \bar{\delta}_{i k}+c_{i j}^{k}\left(f^{*}\right) \geq \hat{u}_{j}^{k}\left(f^{*}\right)
$$

- If $f_{i i}^{*}>0$, then from (d) it follows, since $c_{i i}=0$, that

$$
0+\bar{\delta}_{i k}=\hat{u}_{i}^{k}\left(f^{*}\right) \quad \text { and, hence }, \quad \bar{\delta}_{i k}=\hat{u}_{i}^{k}\left(f^{*}\right)
$$

Interpretation of the Lagrange Analysis

If we consider a destination node \bar{j}, under the regulation, and, if $f_{i \bar{j}}^{k *}>0$, then (d) applies and we obtain:

$$
\bar{\delta}_{i k}+c_{i \bar{j}}^{k}\left(f^{*}\right)=\hat{u}_{\bar{j}}^{k}\left(f^{*}\right)-\bar{\mu}_{\bar{j}}
$$

If the upper bound holds tightly, then the migrants incur a higher utility at destination node \bar{j} than just the sum of the origin node utility and the migration cost.

Alternative Variational Inequality Formulation

Variational Inequality
determine $\left(f^{*}, \delta^{*}, \mu_{j}^{*}\right) \in K^{4}$ such that

$$
\begin{aligned}
& \sum_{i ; i \notin C^{1}} \sum_{j \neq \bar{j}} \sum_{k ; k \notin C^{1}}\left(-\hat{u}_{j}^{k}\left(f^{*}\right)+c_{i j}^{k}\left(f^{*}\right)+\delta_{i k}^{*}\right) \times\left(f_{i j}^{k}-f_{i j}^{k *}\right) \\
& +\sum_{i \in C^{1}} \sum_{k \in C^{1}}\left(-\hat{u}_{\bar{j}}^{k}\left(f^{*}\right)+c_{i \bar{j}}^{k}\left(f^{*}\right)+\delta_{i k}^{*}+\mu_{j}^{*}\right) \times\left(f_{i \bar{j}}^{k}-f_{i \bar{j}^{k}}^{k *}\right) \\
& \quad+\sum_{i} \sum_{k}\left(\bar{p}_{i}^{k}-\sum_{j} f_{i j}^{k *}\right) \times\left(\delta_{i k}-\delta_{i k}^{*}\right) \\
& \quad+\left(U_{\bar{j}}-\sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i \bar{j}}^{k *}\right) \times\left(\mu_{\bar{j}}-\mu_{j}^{*}\right) \geq 0, \\
& \forall\left(f, \delta, \mu_{\bar{j}}^{-}\right) \in K^{4} \equiv\left\{\left(f, \delta, \mu_{\bar{j}}^{-}\right) \mid f \in R_{+}^{J n n}, \delta \in R^{J n}, \mu_{\bar{j}} \in R_{+}\right\}
\end{aligned}
$$

Standard Form

Positions

- $\mathcal{K} \equiv K^{4}$
- $X \equiv\left(f, \delta, \mu_{\bar{j}}\right)$
- $N=J n n+J n+1$
- $F \equiv\left(F_{1}, F_{2}, F_{3}, F_{4}\right)$: the components of F_{1} consist of the elements: $-\hat{u}_{j}^{k}(f)+c_{i j}^{k}(f)+\delta_{i k}$, for $i ; i \notin C^{1}$ and $j \neq \bar{j}$, and $k ; k \notin C^{1}$; the components of F_{2} consist of the elements: $-\hat{u}_{j}^{k}(f)+c_{i j}^{k}(f)+\delta_{i k}+\mu_{j}^{-}$, for $i \in C^{1}$ and $k \in C^{1} ; F_{3}$ consists of the elements: $\bar{p}_{i}^{k}-\sum_{j} f_{i j}^{k}, \forall i, k$, and, finally, F_{4} consists of the single element: $U_{\bar{j}}-\sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i j}^{k}$

Standard Variational Inequality

Determine $X^{*} \in \mathcal{K}$ such that

$$
\left\langle F\left(X^{*}\right), X-X^{*}\right\rangle \geq 0, \quad \forall X \in \mathcal{K}
$$

Illustrative Examples

Origin Countries

Figure: International Migration Network for Illustrative Examples

Case without Regulations

Data

- $\bar{p}_{1}=50$ and $\bar{p}_{2}=0$
- $u_{1}(p)=-p_{1}+100$ and $u_{2}(p)=-p_{2}+120$
- $c_{11}(f)=c_{22}(f)=0, c_{12}(f)=.1 f_{12}+7, c_{21}(f)=f_{21}+10$

Case without Regulations

Data

- $\bar{p}_{1}=50$ and $\bar{p}_{2}=0$
- $u_{1}(p)=-p_{1}+100$ and $u_{2}(p)=-p_{2}+120$
- $c_{11}(f)=c_{22}(f)=0, c_{12}(f)=.1 f_{12}+7, c_{21}(f)=f_{21}+10$

Equilibrium Solution

- $f_{12}^{*}=30, f_{11}^{*}=20, \quad f_{21}^{*}=0, \quad f_{22}^{*}=0$
- $p_{1}^{*}=20, p_{2}^{*}=30$
- $\hat{u}_{1}\left(f^{*}\right)=u_{1}\left(p^{*}\right)=80, \quad \hat{u}_{2}\left(f^{*}\right)=u_{2}\left(p^{*}\right)=90$
- $c_{11}\left(f^{*}\right)=c_{22}\left(f^{*}\right)=0, c_{12}\left(f^{*}\right)=10$, and $c_{21}\left(f^{*}\right)=10$
- $\bar{\delta}_{11}=80, \bar{\delta}_{21}=90$, and $\bar{\gamma}_{11}=\bar{\gamma}_{21}=\bar{\gamma}_{12}=\bar{\gamma}_{22}=0$
and the equilibrium conditions hold true.

Case with regulations

Regulation

$$
f_{1 \overline{2}} \leq U_{\overline{2}}=20
$$

Case with regulations

Regulation

$$
f_{1 \overline{2}} \leq U_{\overline{2}}=20
$$

New Equilibrium Solution

- $f_{11}^{*}=30, \quad f_{1 \overline{2}}^{*}=20, \quad f_{21}^{*}=0, \quad f_{2 \overline{2}}^{*}=0$
- $p_{1}^{*}=30$ and $p_{2}^{*}=20$
- $\hat{u}_{1}\left(f^{*}\right)=u_{1}\left(p^{*}\right)=70, \quad \hat{u}_{2}\left(f^{*}\right)=u_{2}\left(p^{*}\right)=100$
- $c_{11}\left(f^{*}\right)=c_{2 \overline{2}}\left(f^{*}\right)=0 ; c_{1 \overline{2}}\left(f^{*}\right)=9, c_{21}\left(f^{*}\right)=10$
- $\bar{\mu}_{\overline{2}}=21$
- $\bar{\delta}_{11}=70, \bar{\delta}_{21}=100$, and $\bar{\gamma}_{11}=\bar{\gamma}_{21}=\bar{\gamma}_{12}=\bar{\gamma}_{22}=0$
and the equilibrium conditions hold true.

The Modified Projection Method

- Step 0: Initialization Initialize with $X^{0} \in \mathcal{K}$. Set $t:=1$ and let β be a scalar such that $0<\beta \leq \frac{1}{L}$, where L is the Lipschitz constant
- Step 1: Computation Compute \bar{X}^{t} by solving the variational inequality subproblem:

$$
\left\langle\bar{X}^{t}+\beta F\left(X^{t-1}\right)-X^{t-1}, X-\bar{X}^{t}\right\rangle \geq 0, \quad \forall X \in \mathcal{K}
$$

- Step 2: Adaptation Compute X^{t} by solving the variational inequality subproblem:

$$
\left\langle X^{t}+\beta F\left(\bar{X}^{t}\right)-X^{t-1}, X-X^{t}\right\rangle \geq 0, \quad \forall X \in \mathcal{K}
$$

- Step 3: Convergence Verification If $\left|X^{t}-X^{t-1}\right| \leq \epsilon$, with $\epsilon>0$, a pre-specified tolerance, then stop; otherwise, set $t:=t+1$ and go to Step 1

Explicit Formulae

University of
Catania
Patrizia
DANIELE

$$
\bar{f}_{i j}^{k t}=\max \left\{0, f_{i j}^{k(t-1)}+\beta\left(\hat{u}_{j}^{k}\left(f^{t-1}\right)-c_{i j}^{k}\left(f^{t-1}\right)-\delta_{i k}^{t-1}\right)\right\}, i \notin C^{1} ; j \neq j ; k \notin C^{1}
$$

$$
\overline{\bar{F}}_{i j}^{k t}=\max \left\{0, f_{i \bar{j}}^{k(t-1)}+\beta\left(\hat{u}_{j}^{k}\left(f^{t-1}\right)-c_{i j}^{k}\left(f^{t-1}\right)-\delta_{i k}^{t-1}-\mu_{j}^{t-1}\right)\right\}, \quad i \in C^{1} ; k \in C
$$

$$
\bar{\delta}_{i k}^{t}=\delta_{i k}^{t-1}+\beta\left(\sum_{j} f_{i j}^{k(t-1)}-\bar{p}_{i}^{k}\right), \forall i, \forall k
$$

$$
\bar{\mu}_{j}^{t}=\max \left\{0, \mu_{j}^{t-1}+\beta\left(\sum_{i \in C^{1}} \sum_{k \in C^{1}} f_{i j}^{k(t-1)}-U_{\bar{j}}\right)\right\}
$$

Single Class Example without and with a Regulation

University of Catania

Patrizia
DANIELE

Introduction

The

mathematical model

Variational
Inequality Formulations

Lagrange Theory
Illustrative
Examples

The Modified
Projection Method

Numerical Examples

Example 1
3 countries, no regulations and a single class of migrants

Single Class Example without and with a Regulation

Example 1

3 countries, no regulations and a single class of migrants

Data

- $\bar{p}_{1}=10,000, \bar{p}_{2}=5,000$, and $\bar{p}_{3}=1,000$
- $u_{1}(p)=-p_{1}-.5 p_{2}+30,000, u_{2}(p)=-2 p_{2}-p_{1}+20,000$,
$u_{3}(p)=-3 p_{3}+.5 p_{2}+10,000$
- $c_{i i}=0, \quad i=1,2,3$
- $c_{12}(f)=2 f_{12}+20, \quad c_{13}(f)=f_{13}+30$
- $c_{21}(f)=5 f_{21}+40, \quad c_{23}(f)=4 f_{23}+20$
- $c_{31}(f)=6 f_{31}+80, \quad c_{32}(f)=4 f_{32}+60$
- $\beta=.1$

Single Class Example without Regulations

Equilibrium migration flow pattern

- $f_{11}^{*}=10,000.00, \quad f_{12}^{*}=0.00, \quad f_{13}^{*}=0.00$
$f_{21}^{*}=2,447.90, \quad f_{22}^{*}=1,519.66, \quad f_{23}^{*}=1,032.44$
$f_{31}^{*}=1,000.00, \quad f_{32}^{*}=0.00, \quad f_{33}^{*}=0.00$
- $c_{11}\left(f^{*}\right)=0.00, \quad c_{12}\left(f^{*}\right)=20.00, \quad c_{13}\left(f^{*}\right)=30.00$
$c_{21}\left(f^{*}\right)=12,279.50, \quad c_{22}\left(f^{*}\right)=0.00, \quad c_{23}\left(f^{*}\right)=4,149.76$
$c_{31}\left(f^{*}\right)=6,080.09, \quad c_{32}\left(f^{*}\right)=60.00, \quad c_{33}\left(f^{*}\right)=0.00$
- $p_{1}^{*}=13,447.92, \quad p_{2}^{*}=1,519.66, \quad p_{3}^{*}=1,032.44$
- $u_{1}\left(p^{*}\right)=15,792.25, \quad u_{2}\left(p^{*}\right)=3,512.75, \quad u_{3}\left(p^{*}\right)=7,662.51$
- $\delta_{1}^{*}=15,792.25, \quad \delta_{2}^{*}=3,512.75, \quad \delta_{3}^{*}=9,712.17$

Single Class Example with a Regulation

University of Catania

DANIELE

Regulation

$$
f_{2 \overline{1}}+f_{3 \overline{1}} \leq 2,000
$$

Equilibrium migration pattern

- $f_{11}^{*}=10,000.00, f_{12}^{*}=0.00, \quad f_{13}^{*}=0.00$,
$f_{21}^{*}=1,458.43, \quad f_{22}^{*}=2,545.92, \quad f_{23}^{*}=995.65$
$f_{3 \overline{1}}^{*}=541.59, \quad f_{32}^{*}=0.00, \quad f_{33}^{*}=458.41$
- $c_{11}\left(f^{*}\right)=0.00, \quad c_{12}\left(f^{*}\right)=20.00, \quad c_{13}\left(f^{*}\right)=30.00$ $c_{21}\left(f^{*}\right)=7,332.13, \quad c_{22}\left(f^{*}\right)=0.00, \quad c_{23}\left(f^{*}\right)=4,002.61$ $c_{3 \overline{1}}\left(f^{*}\right)=3,329.52, \quad c_{32}\left(f^{*}\right)=60.00, \quad c_{33}\left(f^{*}\right)=0.00$
- $p_{1}^{*}=12,000.02, \quad p_{2}^{*}=2,545.92, \quad p_{3}^{*}=1,454.06$
- $u_{1}\left(p^{*}\right)=16,727.02, \quad u_{2}\left(p^{*}\right)=2,908.15, \quad u_{3}\left(p^{*}\right)=6,910.76$
- $\delta_{1}^{*}=16,727.02, \quad \delta_{2}^{*}=2,908.15, \quad \delta_{3}^{*}=6,910.76$
- $\mu_{1}^{*}=6,486.74$

Multiclass Example without Regulations

Example 2

3 countries and 2 classes of migrants
model
Variational
Inequality
Formulations
Lagrange Theory
Illustrative
Examples
The Modified
Projection
Method
Numerical
Examples

Multiclass Example without Regulations

Example 2

3 countries and 2 classes of migrants

Data

$$
\begin{aligned}
& \text { - } u_{1}^{1}(p)=-p_{1}^{1}-.5 p_{2}^{1}-.5 p_{1}^{2}+30,000, u_{2}^{1}(p)= \\
& -2 p_{2}^{1}-p_{1}^{1}-p_{2}^{2}+20,000, u_{3}^{1}(p)=-3 p_{3}^{1}+.5 p_{2}^{1}-p_{3}^{2}+10,000 \\
& u_{1}^{2}(p)=-2 p_{1}^{2}-p_{1}^{1}+25,000, \quad u_{2}^{2}(p)= \\
& -3 p_{2}^{2}-p_{2}^{1}+15,000, \quad u_{3}^{2}(p)=-p_{3}-.5 p_{1}^{1}+20,000
\end{aligned}
$$

- $\bar{p}_{1}^{2}=5,000, \bar{p}_{2}^{2}=3,000$, and $\bar{p}_{3}^{2}=500$
- $c_{i i}^{k}=0, \forall i$, and for $k=1,2$
- $c_{12}^{2}(f)=2 f_{12}^{2}+10, \quad c_{13}^{2}(f)=f_{13}^{2}+20$,
$c_{21}^{2}(f)=3 f_{21}^{2}+10, \quad c_{23}^{2}(f)=2 f_{23}^{2}+30$,

$$
c_{31}^{2}(f)=f_{31}^{2}+25, \quad c_{32}^{2}(f)=2 f_{32}^{2}+15
$$

Multiclass Example without Regulations

Equilibrium migration pattern

- $f_{11}^{1 *}=10,000.00, \quad f_{12}^{1 *}=0.00, \quad f_{13}^{1 *}=0.00$,
$f_{21}^{1 *}=2,649.57, \quad f_{22}^{1 *}=1,547.75, \quad f_{23}^{1 *}=802.68$,
$f_{31}^{1 *}=1,000.00, \quad f_{32}^{1 *}=0.00, \quad f_{33}^{1 *}=0.00$
- $f_{11}^{2 *}=2,343.67, f_{12}^{2 *}=182.49, f_{13}^{2 *}=2,473.85$,
$f_{21}^{2 *}=0.00, \quad f_{22}^{2 *}=1,955.57, \quad f_{23}^{2 *}=1,044.43$,
$f_{31}^{2 *}=0.00, \quad f_{32}^{2 *}=0.00, \quad f_{33}^{2 *}=500.00$
- $c_{11}^{1}\left(f^{*}\right)=0.00, \quad c_{12}^{1}\left(f^{*}\right)=20.00, \quad c_{13}^{1}\left(f^{*}\right)=30.00$,
$c_{21}^{1}\left(f^{*}\right)=13,287.86, \quad c_{22}^{1}\left(f^{*}\right)=0.00, \quad c_{23}^{1}\left(f^{*}\right)=3,230.72$,
$c_{31}^{1}\left(f^{*}\right)=6,080.09, \quad c_{32}^{1}\left(f^{*}\right)=60.00, \quad c_{33}^{1}\left(f^{*}\right)=0.00$

Multiclass Example without Regulations

Equilibrium migration pattern

- $c_{11}^{2}\left(f^{*}\right)=0.00, \quad c_{12}^{2}\left(f^{*}\right)=374.98, \quad c_{13}^{2}\left(f^{*}\right)=2,493.85$, $c_{21}^{2}\left(f^{*}\right)=10.00, \quad c_{22}^{2}\left(f^{*}\right)=0.00, \quad c_{23}^{2}\left(f^{*}\right)=2,118.86$, $c_{31}^{2}\left(f^{*}\right)=25.00, \quad c_{32}^{2}\left(f^{*}\right)=15.00, \quad c_{33}^{2}\left(f^{*}\right)=0.00$
- $p_{1}^{1 *}=13,649.59, \quad p_{2}^{1 *}=1,547.75, \quad p_{3}^{1 *}=802.68$, $p_{1}^{2 *}=2,343.67, \quad p_{2}^{2 *}=2,138.06, \quad p_{3}^{2 *}=4,018.28$
- $u_{1}^{1}\left(p^{*}\right)=14,404.70, \quad u_{2}^{1}\left(p^{*}\right)=1,116.84, \quad u_{3}^{1}\left(p^{*}\right)=$ 4, 347.56,

$$
u_{1}^{2}\left(p^{*}\right)=6,663.08, \quad u_{2}^{2}\left(p^{*}\right)=7,038.06, \quad u_{3}^{2}\left(p^{*}\right)=9,156.92
$$

- $\delta_{1}^{1 *}=14,404.70, \quad \delta_{2}^{1 *}=1,116.84, \quad \delta_{3}^{1 *}=8,324.62$,

$$
\delta_{1}^{2 *}=6,663.08, \quad \delta_{2}^{2 *}=7,038.06, \quad \delta_{3}^{2 *}=9,156.92
$$

Muliticlass Example with a Regulation

University of Catania

Patrizia
DANIELE

Variational Inequality Formulations Lagrange Theory Illustrative Examples

The Modified Projection Method

Numerical

Examples
Conclusions

Regulation

$$
f_{13}^{1}+f_{23}^{1}+f_{13}^{2}+f_{23}^{2} \leq 2,000
$$

Equilibrium migration pattern

$$
\begin{aligned}
& \text { - } \begin{array}{l}
f_{11}^{1 *}=10,000.00, \quad f_{12}^{1 *}=0.00, \quad f_{13}^{1 *}=0.00, \\
f_{21}^{1 *}=2,746.92, \quad f_{22}^{1 *}=1,788.86, \quad f_{23}^{1 *}=464.22, \\
f_{31}^{1 *}=1,000.00, \quad f_{32}^{1 *}=0.00, \quad f_{33}^{1 *}=0.00 \\
\text { - } f_{11}^{2 *}=3,581.93, \quad f_{12}^{2 *}=232.53, \quad f_{13}^{2 *}=1,185.54, \\
f_{21}^{2 *}=0.00, \quad f_{22}^{2 *}=2,649.76, \quad f_{23}^{2 *}=350.24, \\
f_{31}^{2 *}=0.00, \quad f_{32}^{2 *}=0.00, \quad f_{33}^{2 *}=500.00 \\
\text { - } c_{11}^{1}\left(f^{*}\right)=0.00, \quad c_{12}^{1}\left(f^{*}\right)=20.00, \quad c_{13}^{1}\left(f^{*}\right)=30.00, \\
c_{21}^{1}\left(f^{*}\right)=13,774.62, \quad c_{22}^{1}\left(f^{*}\right)=0.00, \quad c_{23}^{1}\left(f^{*}\right)=1,876.90, \\
c_{31}^{1}\left(f^{*}\right)=6.080 .02, \quad c_{32}^{1}\left(f^{*}\right)=60.00, \quad c_{33}^{1}\left(f^{*}\right)=0.00
\end{array}
\end{aligned}
$$

Muliticlass Example with a Regulation

DANIELE
Equilibrium migration pattern

- $c_{11}^{2}\left(f^{*}\right)=0.00, \quad c_{12}^{2}\left(f^{*}\right)=475.06, \quad c_{1 \overline{3}}^{2}\left(f^{*}\right)=1,205.54$, $c_{21}^{2}\left(f^{*}\right)=10.00, \quad c_{22}^{2}\left(f^{*}\right)=0.00, \quad c_{2 \overline{3}}^{2}\left(f^{*}\right)=730.47$, $c_{31}^{2}\left(f^{*}\right)=25.00, \quad c_{32}^{2}\left(f^{*}\right)=15.00, \quad c_{33}^{2}\left(f^{*}\right)=0.00$
- $p_{1}^{1 *}=13,746.93, \quad p_{2}^{1 *}=1,788.86, \quad p_{3}^{1 *}=464.22$, $p_{1}^{2 *}=3,581.93, \quad p_{2}^{2 *}=2,882.29, \quad p_{3}^{2 *}=2,035.78$
- $u_{1}^{1}\left(p^{*}\right)=13,567.68, \quad u_{2}^{1}\left(p^{*}\right)=-206.93, \quad u_{3}^{1}\left(p^{*}\right)=7,465.98$, $u_{1}^{2}\left(p^{*}\right)=4,089.21, \quad u_{2}^{2}\left(p^{*}\right)=4,564.27, \quad u_{3}^{2}\left(p^{*}\right)=11,090.76$
- $\delta_{1}^{1 *}=13,567.69, \quad \delta_{2}^{1 *}=-206.94, \quad \delta_{3}^{1 *}=7,487.66$, $\delta_{1}^{2 *}=4,089.20, \quad \delta_{2}^{2 *}=4,564.27, \quad \delta_{3}^{2 *}=11,090.75$,
- $\mu_{3}^{*}=5,796.02$

Conclusions

- Challenges such as climate change and associated disruptions, along with wars, conflicts, and strife, are acting as push forces for humans to seek locations of greater safety and security

Conclusions

- Challenges such as climate change and associated disruptions, along with wars, conflicts, and strife, are acting as push forces for humans to seek locations of greater safety and security
- Governments are being forced to deal with increases in migratory flows across national boundaries

