

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Outline

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele A. Maugeri A. Nagurney

Department of Mathematics and Computer Science University of Catania - Italy

ODS 2017 - Sorrento, September 4-7, 2017

Session: Game Theory

Cyber Attacks

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Verizon's 2016 Data Breach Investigations Report

2,260 confirmed data breaches at organizations in 82 countries

イロト イポト イヨト イヨト

Recent Cyber Attacks

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Late summer 2014: 76 million customers

Recent Cyber Attacks

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Late 2013: 40 million payment cards stolen and upwards of 70 million other personal records compromised

A D > A P > A B > A B >

Sac

Recent Cyber Attacks

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Late Fall 2014: catastrophic and a public relations nightmare

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Center for Strategic and International Sudies (2014)

It has been estimated that the world economy sustained \$445 billion in losses from cyberattacks in 2014.

The estimated annual cost to the global economy from cybercrime is more than \$400 billion with a conservative estimate being \$375 billion in losses, a number that exceeds the national income of most countries.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Center for Strategic and International Sudies (2014)

It has been estimated that the world economy sustained \$445 billion in losses from cyberattacks in 2014. The estimated annual cost to the global economy from cybercrime is more than \$400 billion with a conservative estimate being \$375 billion in losses, a number that exceeds the national income of most countries.

Pricewaterhouse Coopers (2014)

The number of cybersecurity incidents that were detected by respondents to their survey increased by 48% to 42.8 million in 2014

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Center for Strategic and International Sudies (2014)

It has been estimated that the world economy sustained \$445 billion in losses from cyberattacks in 2014. The estimated annual cost to the global economy from cybercrime is more than \$400 billion with a conservative estimate being \$375 billion in losses, a number that exceeds the national income of most countries.

Pricewaterhouse Coopers (2014)

The number of cybersecurity incidents that were detected by respondents to their survey increased by 48% to 42.8 million in 2014

No industrial sector is immune to cyber attacks with sectors such as financial services, insurance, pharmaceuticals, healthcare, high technology, energy, automotive and governments being especially attractive targets.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ― 圖 _ ∽○○?

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Kaspersky Lab (2015)

A multinational gang of cybercriminals, known as *Carbanak*, infiltrated more than 100 banks across 30 countries and extracted as much as one billion dollars over a period of roughly two years

(日)、(四)、(E)、(E)、(E)

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Kaspersky Lab (2015)

A multinational gang of cybercriminals, known as *Carbanak*, infiltrated more than 100 banks across 30 countries and extracted as much as one billion dollars over a period of roughly two years

Forbes (2015)

Cyberattacks can result not only in direct financial losses and/or the loss of data, but also in an organization's highly valued asset - its reputation

World-wide spending on cybersecurity was approximately \$75 billion in 2015, with the expectation that, by 2020, companies around the globe will be spending around \$170 billion annually

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Kaspersky Lab (2015)

A multinational gang of cybercriminals, known as *Carbanak*, infiltrated more than 100 banks across 30 countries and extracted as much as one billion dollars over a period of roughly two years

Forbes (2015)

Cyberattacks can result not only in direct financial losses and/or the loss of data, but also in an organization's highly valued asset - its reputation

World-wide spending on cybersecurity was approximately \$75 billion in 2015, with the expectation that, by 2020, companies around the globe will be spending around \$170 billion annually

Numerous companies and organizations have now realized that investing in cybersecurity is an imperative

Some Bibliography

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

- A. Nagurney, *Service Science* (2015): developed a multiproduct network economic model of cybercrime with a focus on financial services, since that industrial sector is a major target of cyberattacks
- A. Nagurney, L.S. Nagurney, *Netnomics* (2015): constructed a supply chain game theory model in which sellers maximize their expected profits while determining both their product transactions with consumers as well as their cybersecurity investments
- A. Nagurney, L.S. Nagurney, S. Shukla, in Computation, Cryptography, and Network Security (2015): extended the model to quantify and compute network vulnerability

Some Bibliography

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

- A. Nagurney, P. D., S. Shukla, *Ann. Oper. Res.* (2017): introduced a novel game theory model in which the budget constraints for cybersecurity investments of retailers, which are nonlinear, are explicitly included, and conducted a spectrum of sensitivity analysis exercises
- P.D., A. Maugeri, A. Nagurney, in **Operations Research**, **Engineering**, and **Cyber Security** (2017): provided an alternative formulation of the variational inequality and a deeper qualitative and economic analysis with a focus on the Lagrange multipliers associated with the constraints

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ う へ ()

Demand Markets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Figure: The Bipartite Structure of the Supply Chain Network Game Theory Model

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Aim:

The retailers seek to maximize their individual expected utilities, consisting of expected profits, and compete in a noncooperative game in terms of strategies consisting of their respective product transactions and security levels

Conservation Law:

$$d_j = \sum_{i=1}^m Q_{ij}, \quad j = 1, \dots, n$$

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Upper Bounds for Production Transactions

$$0 \leq Q_{ij} \leq ar{Q}_{ij}, \hspace{1em} i=1,\ldots,m; j=1,\ldots,n$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

Sac

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney Upper Bounds for Production Transactions

$$0 \leq Q_{ij} \leq ar{Q}_{ij}, \quad i=1,\ldots,m; j=1,\ldots,n$$

Upper Bounds for Cybersecurity Levels

$$0 \leq s_i \leq u_{s_i}, \quad i = 1, \ldots, m, \quad \text{where } u_{s_i} < 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney Upper Bounds for Production Transactions

$$0 \leq Q_{ij} \leq ar{Q}_{ij}, \quad i=1,\ldots,m; j=1,\ldots,n$$

Upper Bounds for Cybersecurity Levels

$$0 \leq s_i \leq u_{s_i}, \quad i = 1, \dots, m, \quad \text{where } u_{s_i} < 1$$

Demand Price of the Product at Demand Market j

$$\rho_j(d, \bar{s}) \equiv \hat{\rho}_j(Q, \bar{s}); \quad j = 1, \dots, n$$

(日)、(四)、(E)、(E)、(E)

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney Upper Bounds for Production Transactions

$$0 \leq Q_{ij} \leq ar{Q}_{ij}, \quad i=1,\ldots,m; j=1,\ldots,n$$

Upper Bounds for Cybersecurity Levels

$$0 \leq s_i \leq u_{s_i}, \quad i = 1, \ldots, m, \quad \text{where } u_{s_i} < 1$$

Demand Price of the Product at Demand Market j

$$\rho_j(d,\bar{s}) \equiv \hat{\rho}_j(Q,\bar{s}); \quad j=1,\ldots,n$$

Investment Cost Function Associated with Achieving a Security Level s_i

$$h_i(s_i) = lpha_i \left(rac{1}{\sqrt{1-s_i}} - 1
ight)$$
 with $lpha_i > 0$

A Cybersecurity Investment Supply Chain Game Theory Model ____

Patrizia Daniele, A. Maugeri, A. Nagurney

Budget Constraint

$$\alpha_i\left(\frac{1}{\sqrt{(1-s_i)}}-1\right)\leq B_i;\quad i=1,\ldots,m,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Budget Constraint

$$lpha_i\left(rac{1}{\sqrt{(1-s_i)}}-1
ight)\leq B_i;\quad i=1,\ldots,m,$$

Profit of Retailer i

$$f_i(Q,s) = \sum_{j=1}^n \hat{
ho}_j(Q,s) Q_{ij} - c_i \sum_{j=1}^n Q_{ij} - \sum_{j=1}^n c_{ij}(Q_{ij})$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Utility Optimization

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Each retailer seeks to maximize his expected utility

$$\max E(U_i) = (1 - p_i)f_i(Q, s) + p_i(f_i(Q, s) - D_i) - h_i(s_i)$$
$$= f_i(Q, s) - p_iD_i - h_i(s_i)$$

where:

- D_i : damage incurred by retailer i
- $p_i = (1 s_i)(1 \bar{s}), \quad i = 1, ..., m$: probability of a successful cyberattack on retailer *i*

Nash Equilibrium

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney Definition (A Supply Chain Nash Equilibrium in Product Transactions and Security Levels)

A product transaction and security level pattern $(Q^*, s^*) \in \mathbb{K}$ is said to constitute a supply chain Nash equilibrium if for each retailer i; i = 1, ..., m,

$$\mathsf{E}(U_i(Q_i^*,s_i^*,\hat{Q}_i^*,\hat{s}_i^*)) \geq \mathsf{E}(U_i(Q_i,s_i,\hat{Q}_i^*,\hat{s}_i^*)), \quad orall (Q_i,s_i) \in \mathbb{K}^d$$

where

$$\hat{Q_i^*} \equiv (Q_1^*, \dots, Q_{i-1}^*, Q_{i+1}^*, \dots, Q_m^*);$$
 and
 $\hat{s_i^*} \equiv (s_1^*, \dots, s_{i-1}^*, s_{i+1}^*, \dots, s_m^*)$

Nash Equilibrium

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney Definition (A Supply Chain Nash Equilibrium in Product Transactions and Security Levels)

A product transaction and security level pattern $(Q^*, s^*) \in \mathbb{K}$ is said to constitute a supply chain Nash equilibrium if for each retailer i; i = 1, ..., m,

$$\mathsf{E}(U_i(Q_i^*,s_i^*,\hat{Q}_i^*,\hat{s}_i^*)) \geq \mathsf{E}(U_i(Q_i,s_i,\hat{Q}_i^*,\hat{s}_i^*)), \quad orall (Q_i,s_i) \in \mathbb{K}^d$$

where

$$\hat{Q_i^*} \equiv (Q_1^*, \dots, Q_{i-1}^*, Q_{i+1}^*, \dots, Q_m^*);$$
 and
 $\hat{s_i^*} \equiv (s_1^*, \dots, s_{i-1}^*, s_{i+1}^*, \dots, s_m^*)$

A supply chain Nash equilibrium is established if no retailer can unilaterally improve upon his expected utility (expected profit) by choosing an alternative vector of product transactions and security level.

Variational Inequality Formulation

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Theorem

Assume that $E(U_i(Q, s))$, i = 1, ..., m is concave and continuously differentiable. Then $(Q^*, s^*) \in \mathbb{K}$ is a supply chain Nash equilibrium \iff if it satisfies variational inequality

$$-\sum_{i=1}^m\sum_{j=1}^nrac{\partial \mathcal{E}(U_i(Q^*,s^*))}{\partial Q_{ij}} imes ig(Q_{ij}-Q_{ij}^*ig)$$

$$-\sum_{i=1}^m rac{\partial \mathcal{E}(U_i(Q^*,s^*))}{\partial s_i} imes (s_i-s_i^*) \geq 0, \quad orall (Q,s) \in \mathbb{K}$$

Variational Inequality Formulation

A Cybersecurity Investment Supply Chain Game Theory Model

Feasible Set

Patrizia Daniele, A. Maugeri, A. Nagurney

$$\mathbb{K} = \left\{ (Q, s) \in \mathbb{R}^{mn+n} : -Q_{ij} \leq 0, \ Q_{ij} - \overline{Q}_{ij} \leq 0, \ -s_i \leq 0, \\ s_i - u_{s_i} \leq 0, \ h_i(s_i) - B_i \leq 0, \ i = 1, \dots, m, \ j = 1, \dots, n \right\}$$

Variational Inequality Formulation

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

$$\begin{split} \mathbb{K} &= \left\{ (Q,s) \in \mathbb{R}^{mn+n} : -Q_{ij} \leq 0, \ Q_{ij} - \overline{Q}_{ij} \leq 0, \ -s_i \leq 0, \\ s_i - u_{s_i} \leq 0, \quad h_i(s_i) - B_i \leq 0, \ i = 1, \dots, m, \ j = 1, \dots, n \right\} \end{split}$$

Minimization Problem

Feasible Set

$$V(Q,s) \geq 0$$
 in $\mathbb K$ and $\min_{\mathbb K} V(Q,s) = V(Q^*,s^*) = 0$, where

$$egin{aligned} \mathcal{V}(\mathcal{Q},s) &= & -\sum_{i=1}^m \sum_{j=1}^n rac{\partial \mathcal{E}(\mathcal{U}_i(\mathcal{Q}^*,s^*))}{\partial \mathcal{Q}_{ij}} \left(\mathcal{Q}_{ij}-\mathcal{Q}_{ij}^*
ight) \ & -\sum_{i=1}^m rac{\partial \mathcal{E}(\mathcal{U}_i(\mathcal{Q}^*,s^*))}{\partial s_i} \left(s_i-s_i^*
ight) \end{aligned}$$

The Lagrange Theory

Lagrange Function

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

$\mathcal{L}(Q, s, \lambda^{1}, \lambda^{2}, \mu^{1}, \mu^{2}, \lambda) = -\sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial E(U_{i}(Q^{*}, s^{*}))}{\partial Q_{ij}} (Q_{ij} - Q_{ij}^{*})$ $-\sum_{i=1}^{m} \frac{\partial E(U_{i}(Q^{*}, s^{*}))}{\partial s_{i}} (s_{i} - s_{i}^{*}) + \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}^{1} (-Q_{ij})$ $+\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij}^{2} (Q_{ij} - \overline{Q}_{ij}) + \sum_{i=1}^{m} \mu_{i}^{1} (-s_{i})$

$$+\sum_{i=1}\mu_{i}^{2}(s_{i}-u_{s_{i}})+\sum_{i=1}\lambda_{i}(h_{i}(s_{i})-B_{i}),$$

where $(Q, s) \in \mathbb{R}^{mn+n}, \lambda^1, \lambda^2 \in \mathbb{R}^{mn}_+, \mu^1, \mu^2 \in \mathbb{R}^m_+$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Lagrange Theory

Theorem (Saddle Point)

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney There exist $\overline{\lambda}^1$, $\overline{\lambda}^2 \in \mathbb{R}^{mn}_+$, $\overline{\mu}^1$, $\overline{\mu}^2$, $\overline{\lambda} \in \mathbb{R}^m_+$ such that the vector $(Q^*, s^*, \overline{\lambda}^1, \overline{\lambda}^2, \overline{\mu}^1, \overline{\mu}^2, \overline{\lambda})$ is a saddle point of the Lagrange function; namely,

$$egin{aligned} \mathcal{L}(m{Q}^*,m{s}^*,\lambda^1,\lambda^2,\mu^1,\mu^2,\lambda) &\leq & \mathcal{L}(m{Q}^*,m{s}^*,\overline{\lambda}^1,\overline{\lambda}^2,\overline{\mu}^1,\overline{\mu}^2,\overline{\lambda}) \ &\leq & \mathcal{L}(m{Q},m{s},\overline{\lambda}^1,\overline{\lambda}^2,\overline{\mu}^1,\overline{\mu}^2,\overline{\lambda}) \end{aligned}$$

 $orall (\mathcal{Q}, s) \in \mathbb{K}, \, orall \lambda^1, \lambda^2 \in \mathbb{R}^{mn}_+, \, orall \mu^1, \mu^2, \lambda \in \mathbb{R}^m_+$ and

$$\overline{\lambda}_{ij}^1(-Q_{ij}^*)=0, \quad \overline{\lambda}_{ij}^2(Q_{ij}^*-\overline{Q}_{ij})=0, \quad orall i, \ orall j$$

 $\overline{\mu}_i^1(-s_i^*)=0, \quad \overline{\mu}_i^2(s_i^*-u_{s_i})=0, \quad \overline{\lambda}_i(h_i(s_i^*)-B_i)=0, \quad \forall i$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The Lagrange Theory

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney It follows that $(Q^*, s^*) \in \mathbb{R}^{mn+n}_+$ is a minimal point of $\mathcal{L}(Q, s, \overline{\lambda}^1, \overline{\lambda}^2, \overline{\mu}^1, \overline{\mu}^2, \overline{\lambda})$ in the whole space \mathbb{R}^{mn+n} and, hence, for all $i = 1, \dots, m$, and $j = 1, \dots, n$, we get:

$$\frac{\partial \mathcal{L}(Q^*, s^*, \overline{\lambda}^1, \overline{\lambda}^2, \overline{\mu}^1, \overline{\mu}^2, \overline{\lambda})}{\partial Q_{ij}} = -\frac{\partial E(U_i(Q^*, s^*))}{\partial Q_{ij}} - \overline{\lambda}_{ij}^1 + \overline{\lambda}_{ij}^2 = 0$$
$$\frac{\partial \mathcal{L}(Q^*, s^*, \overline{\lambda}^1, \overline{\lambda}^2, \overline{\mu}^1, \overline{\mu}^2, \overline{\lambda})}{\partial s_i} = -\frac{\partial E(U_i(Q^*, s^*))}{\partial s_i}$$
$$-\overline{\mu}_i^1 + \overline{\mu}_i^2 + \overline{\lambda}_i \frac{\partial h_i(s^*_i)}{\partial s_i} = 0$$

which represent an equivalent formulation of the variational inequality

Expected Utilities

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney We define:

•
$$\frac{\partial E(U_i(Q^*, s^*))}{\partial Q_{ij}}$$
: the marginal expected transaction utility,
 $i = 1, ..., m, j = 1, ..., n,$

・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Expected Utilities

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney We define: • $\frac{\partial E(U_i(Q^*, s^*))}{\partial Q_{ij}}$: the marginal expected transaction utility, $i = 1, \dots, m, j = 1, \dots, n,$ • $\frac{\partial E(U_i(Q^*, s^*))}{\partial s_i}$: the marginal expected cybersecurity investment utility, $i = 1, \dots, m$

Expected Utilities

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney We define: • $\frac{\partial E(U_i(Q^*, s^*))}{\partial Q_{ij}}$: the marginal expected transaction utility, i = 1, ..., m, j = 1, ..., n,• $\frac{\partial E(U_i(Q^*, s^*))}{\partial s_i}$: the marginal expected cybersecurity investment utility, i = 1, ..., m $\overline{r^1}$ $\overline{r^2}$

 $\overline{\lambda}_{ij}^1, \overline{\lambda}_{ij}^2$ give a precise evaluation of the behavior of the market with respect to the supply chain product transactions as well as $\overline{\mu}_i^1, \overline{\mu}_i^2$ describe the effects of the marginal expected cybersecurity investment utilities.

Analysis of Marginal Expected Transaction Utilities

A Cybersecurity Investment Supply Chain Game Theory Model We get

Patrizia Daniele, A. Maugeri, A. Nagurney

$$-\frac{\partial E(U_i(Q^*, s^*))}{\partial Q_{ij}} - \overline{\lambda}_{ij}^1 + \overline{\lambda}_{ij}^2 = 0, \quad i = 1, \dots, m, \ j = 1, \dots, n.$$

So, if $0 < Q_{ij}^* < \overline{Q}_{ij}$, then we get $\forall i = 1, \dots, m, \ j = 1, \dots, n$:
$$-\frac{\partial E(U_i(Q^*, s^*))}{\partial Q_{ij}} = c_i + \frac{\partial c_{ij}(Q_{ij}^*)}{\partial Q_{ij}} - \hat{\rho}_j(Q^*, s^*) - \sum_{k=1}^m \frac{\partial \hat{\rho}_k}{\partial Q_{ij}} \times Q_{ik}^* = 0,$$

= na<</p>

Analysis of Marginal Expected Transaction Utilities

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

We get $-\frac{\partial E(U_i(Q^*,s^*))}{\partial Q_{i:}} - \overline{\lambda}_{ij}^1 + \overline{\lambda}_{ij}^2 = 0, \quad i = 1, \dots, m, \ j = 1, \dots, n.$ So, if $0 < Q_{ii}^* < \overline{Q}_{ij}$, then we get $\forall i = 1, \dots, m, j = 1, \dots, n$: $-\frac{\partial E(U_i(Q^*,s^*))}{\partial Q_{ii}} = c_i + \frac{\partial c_{ij}(Q^*_{ij})}{\partial Q_{ii}} - \hat{\rho}_j(Q^*,s^*) - \sum_{i=1}^{m} \frac{\partial \hat{\rho}_k}{\partial Q_{ij}} \times Q^*_{ik} = 0,$ whereas if $\overline{\lambda}_{ij}^1 > 0$, and, hence, $Q_{ij}^* = 0$, and $\overline{\lambda}_{ij}^2 = 0$, we get $-\frac{\partial E(U_i(Q^*,s^*))}{\partial Q_{ii}} = c_i + \frac{\partial c_{ij}(Q_{ij}^*)}{\partial Q_{ii}} - \hat{\rho}_j(Q^*,s^*) - \sum_{k=1}^{ii} \frac{\partial \hat{\rho}_k}{\partial Q_{ij}} \times Q_{ik}^* = \overline{\lambda}_{ij}^1,$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Analysis of Marginal Expected Transaction Utilities

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

We get $-\frac{\partial E(U_i(Q^*, s^*))}{\partial \Omega_{::}} - \overline{\lambda}_{ij}^1 + \overline{\lambda}_{ij}^2 = 0, \quad i = 1, \dots, m, \ j = 1, \dots, n.$ So, if $0 < Q_{ii}^* < \overline{Q}_{ij}$, then we get $\forall i = 1, \dots, m, j = 1, \dots, n$: $-\frac{\partial E(U_i(Q^*,s^*))}{\partial Q_{ii}} = c_i + \frac{\partial c_{ij}(Q_{ij}^*)}{\partial Q_{ii}} - \hat{\rho}_j(Q^*,s^*) - \sum_{i=1}^{m} \frac{\partial \hat{\rho}_k}{\partial Q_{ij}} \times Q_{ik}^* = 0,$ whereas if $\overline{\lambda}_{ii}^1 > 0$, and, hence, $Q_{ii}^* = 0$, and $\overline{\lambda}_{ii}^2 = 0$, we get $-\frac{\partial E(U_i(Q^*,s^*))}{\partial Q_{ij}} = c_i + \frac{\partial c_{ij}(Q^*_{ij})}{\partial Q_{ij}} - \hat{\rho}_j(Q^*,s^*) - \sum_{k=1}^{\prime\prime\prime} \frac{\partial \hat{\rho}_k}{\partial Q_{ij}} \times Q^*_{ik} = \overline{\lambda}^1_{ij},$ and if $\overline{\lambda}_{ii}^2 > 0$, and, hence, $Q_{ii}^* = \overline{Q}_{ij}$, and $\overline{\lambda}_{ii}^1 = 0$, we have $-\frac{\partial E(U_i(Q^*,s^*))}{\partial Q_{ii}} = c_i + \frac{\partial c_{ij}(Q^*_{ij})}{\partial Q_{ii}} - \hat{\rho}_j(Q^*,s^*) - \sum_{l=1}^{\prime\prime\prime} \frac{\partial \hat{\rho}_k}{\partial Q_{ij}} \times Q^*_{ik} = -\overline{\lambda}^2_{ij},$ < □ > < ₩≠i> < ≡ > < ≡ >

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

We have
$$\forall i = 1, \ldots, m$$
:

$$-\frac{\partial E(U_i(Q^*,s^*))}{\partial s_i} - \overline{\mu}_i^1 + \overline{\mu}_i^2 + \overline{\lambda}_i \frac{\partial h_i(s^*)}{\partial s_i} = 0,$$

If $0 < s^*_i < u_{s_i},$ then $\overline{\mu}^1_i = \overline{\mu}^2_i = 0$ and we have

$$\begin{aligned} & \frac{\partial h_i(s_i^*)}{\partial s_i} + \overline{\lambda}_i \frac{\partial h_i(s_i^*)}{\partial s_i} \\ & = \left(1 - \sum_{k=1}^m \frac{s_k^*}{m} + \frac{1 - s_i^*}{m}\right) D_i + \sum_{k=1}^m \frac{\partial \hat{\rho}_k(Q^*, s^*)}{\partial s_i} \times Q_{ik}^*. \end{aligned}$$

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney We have $\forall i = 1, \dots, m$:

$$-\frac{\partial E(U_i(Q^*,s^*))}{\partial s_i} - \overline{\mu}_i^1 + \overline{\mu}_i^2 + \overline{\lambda}_i \frac{\partial h_i(s^*)}{\partial s_i} = 0,$$

If $0 < s^*_i < u_{s_i},$ then $\overline{\mu}^1_i = \overline{\mu}^2_i = 0$ and we have

$$\begin{aligned} \frac{\partial h_i(\boldsymbol{s}_i^*)}{\partial \boldsymbol{s}_i} + \overline{\lambda}_i \frac{\partial h_i(\boldsymbol{s}_i^*)}{\partial \boldsymbol{s}_i} \\ = \left(1 - \sum_{k=1}^m \frac{\boldsymbol{s}_k^*}{m} + \frac{1 - \boldsymbol{s}_i^*}{m}\right) D_i + \sum_{k=1}^m \frac{\partial \hat{\rho}_k(\boldsymbol{Q}^*, \boldsymbol{s}^*)}{\partial \boldsymbol{s}_i} \times \boldsymbol{Q}_{ik}^*. \end{aligned}$$

Since $0 < s_i^* < u_{s_i}$, $h(s_i^*)$ cannot be the upper bound B_i ; hence, $\overline{\lambda}_i$ is zero and hence

$$\frac{\partial h_i(s_i^*)}{\partial s_i} = \left(1 - \sum_{k=1}^m \frac{s_k^*}{m} + \frac{1 - s_i^*}{m}\right) D_i + \sum_{k=1}^m \frac{\partial \hat{\rho}_k(Q^*, s^*)}{\partial s_i} \times Q_{ik}^*$$

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

If
$$\overline{\mu}_i^1 > 0$$
 and, hence, $s_i^* = 0$, and $\overline{\mu}_i^2 = 0$, we get:

$$-\frac{\partial E(U_i(Q^*, s^*))}{\partial s_i}$$

$$= \frac{\partial h_i(0)}{\partial s_i} - \left(1 - \sum_{k=1}^m \frac{s_k^*}{m} + \frac{1 - s_i^*}{m}\right) D_i - \sum_{k=1}^m \frac{\partial \hat{\rho}_k(Q^*, s^*)}{\partial s_i} Q_{ik}^* = \overline{\mu}_i^1.$$

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

If
$$\overline{\mu}_i^1 > 0$$
 and, hence, $s_i^* = 0$, and $\overline{\mu}_i^2 = 0$, we get:

$$-\frac{\partial E(U_i(Q^*, s^*))}{\partial s_i}$$

$$= \frac{\partial h_i(0)}{\partial s_i} - \left(1 - \sum_{k=1}^m \frac{s_k^*}{m} + \frac{1 - s_i^*}{m}\right) D_i - \sum_{k=1}^m \frac{\partial \hat{\rho}_k(Q^*, s^*)}{\partial s_i} Q_{ik}^* = \overline{\mu}_i^1.$$

In contrast, if $\overline{\mu}_i^2 > 0$ and, hence, $s_i^* = u_{s_i}$, retailer j has a marginal gain given by $\overline{\mu}_i^2$, because

$$-\frac{\partial E(U_i(Q^*, u_{s_i}))}{\partial s_i} = -\left(1 - \sum_{\substack{k=1\\k \neq i}}^m \frac{u_{s_k}}{m} + \frac{1 - u_{s_i}}{m}\right) D_i$$
$$-\sum_{k=1}^m \frac{\partial \hat{\rho}_k(Q^*, s^*)}{\partial s_i} \times Q_{ik}^* + \frac{\partial h_i(u_{s_i})}{\partial s_i} + \overline{\lambda}_i \frac{\partial h_i(u_{s_i})}{\partial s_i} = -\overline{\mu}_i^2.$$

Patrizia Daniele, A. Maugeri, A. Nagurney Retailers

Demand Markets

Figure: Network Topology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Cost Functions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Demand Price Functions

Cost Functions

$$\rho_1(d,\overline{s}) = -d_1 + .1 \frac{s_1 + s_2}{2} + 100, \quad \rho_2(d,\overline{s}) = -.5d_2 + .2 \frac{s_1 + s_2}{2} + 200$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Demand Price Functions

Cost Functions

$$\rho_1(d,\overline{s}) = -d_1 + .1 \frac{s_1 + s_2}{2} + 100, \quad \rho_2(d,\overline{s}) = -.5d_2 + .2 \frac{s_1 + s_2}{2} + 200$$

Damage Parameters and Budgets

 $D_1 = 200$ and $D_2 = 210$, $B_1 = B_2 = 2.5$ in millions of \$

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Equilibrium Solution

$$Q_{11}^* = 24.148$$
, $Q_{21}^* = 21.586$, $Q_{12}^* = 99.16$, $Q_{22}^* = 94.16$,
 $\overline{\mu}_1^2 = 19.6055$, $\overline{\mu}_2^2 = 20.3273$,
where $\overline{\mu}_1^2$ and μ_2^2 are the positive marginal expected gains.

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Sac

A Cybersecurity Investment Supply Chain Game Theory Model

Patrizia Daniele, A. Maugeri, A. Nagurney

Equilibrium Solution

wł

$$Q_{11}^* = 24.148$$
, $Q_{21}^* = 21.586$, $Q_{12}^* = 99.16$, $Q_{22}^* = 94.16$,
 $\overline{\mu}_1^2 = 19.6055$, $\overline{\mu}_2^2 = 20.3273$,
here $\overline{\mu}_1^2$ and μ_2^2 are the positive marginal expected gains.

If we double the value of the damage for the first retailer and assume now $D_1 = 400$, then the new value of the Lagrange multiplier is $\overline{\mu}_1^2 = 46.6055$.

Sac

- A Cybersecurity Investment Supply Chain Game Theory Model
- Patrizia Daniele, A. Maugeri, A. Nagurney
- Cyberattacks are negatively globally impacting numerous sectors of economies

・ロト ・ 雪 ト ・ ヨ ト

= na<</p>

- A Cybersecurity Investment Supply Chain Game Theory Model
- Patrizia Daniele, A. Maugeri, A. Nagurney
- Cyberattacks are negatively globally impacting numerous sectors of economies

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∃ \0 < \0</p>

• Organizations are investing in cybersecurity

- A Cybersecurity Investment Supply Chain Game Theory Model
- Patrizia Daniele, A. Maugeri, A. Nagurney
- Cyberattacks are negatively globally impacting numerous sectors of economies
- Organizations are investing in cybersecurity
- Retailers compete in both product transactions and cybersecurity levels seeking to maximize their expected utilities

- A Cybersecurity Investment Supply Chain Game Theory Model
- Patrizia Daniele, A. Maugeri, A. Nagurney
- Cyberattacks are negatively globally impacting numerous sectors of economies
- Organizations are investing in cybersecurity
- Retailers compete in both product transactions and cybersecurity levels seeking to maximize their expected utilities
- The governing equilibrium concept is that of Nash equilibrium

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- A Cybersecurity Investment Supply Chain Game Theory Model
- Patrizia Daniele, A. Maugeri, A. Nagurney
- Cyberattacks are negatively globally impacting numerous sectors of economies
- Organizations are investing in cybersecurity
- Retailers compete in both product transactions and cybersecurity levels seeking to maximize their expected utilities
- The governing equilibrium concept is that of Nash equilibrium
- We perform an analysis of both the marginal expected transaction utilities and the marginal expected cybersecurity investment utilities of the retailers

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ^へ